

Autosubmit Workflow Manager

 Autosubmit

 Autosubmit is an open source Python experiment and workflow
 manager used to manage complex workflows on Cloud and HPC
 platforms.

 $ pip install autosubmit

 Get started
 Installation

 [image: Illustration of a person and workflows running on a platform.]

Autosubmit is a lightweight workflow manager designed to meet climate research
necessities. Unlike other workflow solutions in the domain, it integrates the
capabilities of an experiment manager, workflow orchestrator and monitor in a
self-contained application.

It is a Python package available at PyPI. The source code in Git contains a
Dockerfile used in cloud environments with Kubernetes, and there are examples
of how to install Autosubmit with Conda.

 Automation

 Management of job submission and dependencies without user intervention.

 Data Provenance

 Experiments with unique PIDs, use of open standards for data provenance
 in the experiments and workflows.

 Fault Tolerance

 Automatic retrials and ability to re-run specific parts of
 the experiment in case of failure.

 Resource Management

 Individual platform configuration, allowing users
 to run their experiments without having to modify job scripts.

 Multiplatform

 Widely used to run experiments on different platforms simultaneously, using batch schedulers such as Slurm, PBS, LSF. It is deployed and used on various HPC and cloud systems.

 Open Source

 Autosubmit code is hosted at BSC Earth Sciences' GitLab, licensed
 under the GPLv3 License, and under active development.

Contact Us

	GitLab

	https://earth.bsc.es/gitlab/es/autosubmit/

	Email

	support-autosubmit@bsc.es

Getting Started

This tutorial is a starter’s guide to run a dummy experiment with Autosubmit.

Dummy experiments run workflows with inexpensive empty tasks and therefore are ideal for teaching and testing purposes.

Real experiments instead run workflows with complex tasks. To read information about how to develop parameterizable tasks for Autosubmit workflows, refer to Developing a project.

Pre-requisites

Autosubmit needs to establish password-less SSH connections in order to run and monitor workflows on remote platforms.

Ensure that you have a password-less connection to all platforms you want to use in your experiment. If you are unsure how to do this, please follow these instructions:

	Open a terminal and prompt ssh-keygen -t rsa -b 4096 -C "email@email.com" -m PEM

	Copy the resulting key to your platform of choice. Via SCP or ssh-copy-key.

Generate a key pair for password-less ssh, PEM format is recommended as others can cause problems
ssh-keygen -t rsa -b 4096 -C "email@email.com" -m PEM
Copy the public key to the remote machine
ssh-copy-id -i ~/.ssh/id_rsa.pub user@remotehost
Add your key to ssh agent (if encrypted)
If not initialized, initialize it
eval `ssh-agent -s`
Add the key
ssh-add ~/.ssh/id_rsa
Where ~/.ssh/id_rsa is the path to your private key

Description of most used commands

	Command

	Short description

	expid

	Creates a new experiment and generates a new entry in the database by giving it a serial id composed of 4 letters. In addition, it also creates the folder experiment and the basic folder structure.

	create <expid>

	Generates the experiment workflow.

	run <expid>

	Runs the experiment workflow.

	monitor <expid>

	Shows the experiment workflow structure and status.

	inspect <expid>

	Generates Autosubmit scripts and batch scripts for inspection, by processing the tasks’ templates with the experiment parameters.

	refresh <expid>

	Updates the project directory.

	recovery <expid>

	Recovers the experiment workflow obtaining the last run complete jobs.

	setstatus <expid>

	Sets one or multiple jobs status to a given value.

Create a new experiment

autosubmit expid -dm -H "local" -d "Tutorial"

	-dm: Generates a dummy experiment.

	-H: Sets the principal experiment platform.

	-d: Sets a short description for the experiment.

The output of the command will show the expid of the experiment and generate the following directory structure:

	Experiment folder

	Contains

	conf

	Experiment configuration files.

	pkl

	Workflow pkl files.

	plot

	Visualization output files

	tmp

	Logs, templates and misc files.

	proj

	User scripts and project code. (empty)

Then, execute autosubmit create <expid> -np and Autosubmit will generate the workflow graph.

Run and monitoring

To run an experiment, use `autosubmit run <expid>`. Autosubmit runs experiments performing the following operations:

	First, it checks the experiment configuration. If it is wrong, it won’t proceed further.

	Second, it runs the experiment while retrieving all logs from completed or failed tasks as they run.

	Third, it manages all the workflow steps by following the dependencies defined by the user until all jobs are in COMPLETED or FAILED status. There can be jobs left in WAITING status if their dependencies are in FAILED status.

While the experiment is running, it can be visualized via autosubmit monitor <expid>.

[image: experiment_view]

illustrates the output of the autosubmit monitor. It describes all workflow jobs’ possible status and actual status.

Concurrently, the <expid>/tmp gets filled with the cmd scripts generated by Autosubmit to run the local and remote tasks (in this case, they are sent and submitted to the remote platform(s)).

Autosubmit keeps logs at ASLOGS and LOG_a000 folders, which are filled up with Autosubmit’s command logs and job logs.

Viewing the logs

The autosubmit commands such as expid, run, monitor, all may produce
log files on the user’s file system. To save the user from having to navigate to the
log file, or to memorize the location of these files, Autosubmit provides the
autosubmit cat-log command.

$ autosubmit cat-log a000
Autosubmit is running with 4.0.0b
2023-02-27 21:45:47,863 Autosubmit is running with 4.0.0b
2023-02-27 21:45:47,872
Checking configuration files...
2023-02-27 21:45:47,900 expdef_a000.yml OK
2023-02-27 21:45:47,904 platforms_a000.yml OK
2023-02-27 21:45:47,905 jobs_a000.yml OK
2023-02-27 21:45:47,906 autosubmit_a000.yml OK
2023-02-27 21:45:47,907 Configuration files OK

Note

The -f (--file) option is for the file type, not the file path.
See the complete help and syntax with autosubmit cat-log --help for
a list of supported types, depending on whether you choose a workflow
log or a job log file. Note too that there is a -i (--inspect)
flag in the command to tell Autosubmit you want job files generated by
autosubmit inspect, instead of job files generated by autosubmit run.

Configuration summary

In the folder <expid>/conf there are different files that define the actual experiment configuration.

	File

	Content

	expdef.yml

	
	It contains the default platform, the one set with -H.

	Allows changing the start dates, members and chunks.

	Allows changing the experiment project source (git, local, svn or dummy)

	platforms.yml

	
	It contains the list of platforms to use in the experiment.

	This file contains the definitions for managing clusters, fat-nodes and support computers.

	This file must be filled-up with the platform(s) configuration(s).

	Several platforms can be defined and used in the same experiment.

	jobs.yml

	
	It contains the tasks’ definitions in sections. Depending on the parameters, one section can generate multiple similar tasks.

	This file must be filled-up with the tasks’ definitions.

	Several sections can be defined and used in the same experiment.

	autosubmit.yml

	
	This file contains the definitions that impact the workflow behavior.

	It changes workflow behavior with parameters such as job limitations, remote_dependencies and retrials.

	It extends autosubmit functionalities with parameters such as wrappers and mail notification.

	proj.yml

	
	This file contains the configuration used by the user scripts.

	This file is fully customizable for the current experiment. Allows setting user- parameters that will be readable by the autosubmit jobs.

Final step: Modify and run

It is time to look into the configuration files of the dummy experiment and modify them with a remote platform to run a workflow with a few more chunks.

Open expdef.yml

DEFAULT:
 # Don't change
 EXPID: "a000"
 # Change for your new main platform name, ej. marenostrum4
 HPCARCH: "local"
 # Locate and change these parameters, per ej. numchunks: 3
 EXPERIMENT:
 DATELIST: 20000101
 MEMBERS: fc0
 NUMCHUNKS: 1
 (...)

Now open platforms.yml. Note: This will be an example for marenostrum4

PLATFORMS:
 marenostrum4:
 # Queue type. Options: ps, SGE, LSF, SLURM, PBS, eceaccess
 # scheduler type
 TYPE: slurm
 HOST: mn1.bsc.es,mn2.bsc.es,mn3.bsc.es
 # your project
 PROJECT: bsc32
 # <- your user
 USER: bsc32070
 SCRATCH_DIR: /gpfs/scratch
 ADD_PROJECT_TO_HOST: False
 # use 72:00 if you are using a PRACE account, 48:00 for the bsc account
 MAX_WALLCLOCK: 02:00
 # use 19200 if you are using a PRACE account, 2400 for the bsc account
 MAX_PROCESSORS: 2400
 PROCESSORS_PER_NODE: 48
 SERIAL_QUEUE: debug
 QUEUE: debug

autosubmit create <expid>** (without -np) will generate the new workflow and autosubmit run <expid> will run the experiment with the latest changes.

Warning

If you are using an encrypted key, you will need to add it to the ssh-agent before running the experiment. To do so, run ssh-add <path_to_key>.

Installation

How to install

The Autosubmit code is hosted in Git, at the BSC GitLab public repository. The Autosubmit Python package is available through PyPI, the primary source for Python packages.

	Pre-requisites: bash, python3, sqlite3, git-scm > 1.8.2, subversion, dialog, curl, python-tk(tkinter in centOS), graphviz >= 2.41, pip3

Important

(SYSTEM) Graphviz version must be >= 2.38 except 2.40(not working). You can check the version using dot -v.

	Python dependencies: configobj>=5.0.6, argparse>=1.4.0 , python-dateutil>=2.8.2, matplotlib==3.4.3, numpy==1.21.6, py3dotplus>=1.1.0, pyparsing>=3.0.7, paramiko>=2.9.2, mock>=4.0.3, six>=1.10, portalocker>=2.3.2, networkx==2.6.3, requests>=2.27.1, bscearth.utils>=0.5.2, cryptography>=36.0.1, setuptools>=60.8.2, xlib>=0.21, pip>=22.0.3, ruamel.yaml, pythondialog, pytest, nose, coverage, PyNaCl==1.4.0, six>=1.10.0, requests, xlib, Pygments, packaging==19, typing>=3.7, autosubmitconfigparser

Important

dot -v command should contain “dot”, pdf, png, SVG, Xlib in the device section.

Important

The host machine has to be able to access HPCs/Clusters via password-less ssh. Ensure that the ssh key is in PEM format ssh-keygen -t rsa -b 4096 -C "email@email.com" -m PEM.

To install autosubmit, execute the following:

pip install autosubmit

Or download, unpack and:

python3 setup.py install

Hint

To check if Autosubmit is installed, run autosubmit -v. This command will print Autosubmit’s current version

Hint

To read Autosubmit’s readme file, run autosubmit readme

Hint

To see the changelog, use autosubmit changelog

The sequence of instructions to install Autosubmit and its dependencies with pip.

Warning

The following instructions are for Ubuntu 20.04 LTS. The instructions may vary for other UNIX distributions.

Update repositories
apt update

Avoid interactive stuff
export DEBIAN_FRONTEND=noninteractive

Dependencies
apt install wget curl python3 python3-tk python3-dev graphviz -y -q

Additional dependencies related with pycrypto
apt install build-essential libssl-dev libffi-dev -y -q

Install Autosubmit using pip
pip3 install autosubmit

Check that we can execute autosubmit commands
autosubmit -h

For a very quick test, you can follow the next instructions to configure and run Autosubmit at the user level. Otherwise, please go directly to How to configure Autosubmit [https://autosubmit.readthedocs.io/en/master/installation/index.html#how-to-configure-autosubmit] .

Quick-configure (user-level database)
autosubmit configure

Install
autosubmit install

Quick-start

Get expid
autosubmit expid -H "local" -d "Test exp in local."

Create with
Since it was a new install, the expid will be a000
autosubmit create a000

In case you want to use a remote platform

Generate a key pair for password-less ssh. PEM format is recommended as others can cause problems
ssh-keygen -t rsa -b 4096 -C "email@email.com" -m PEM

Copy the public key to the remote machine
ssh-copy-id -i ~/.ssh/id_rsa.pub user@remotehost

Add your key to the ssh-agent (if encrypted)

If not initialized, initialize it
eval `ssh-agent -s`

Add the key
ssh-add ~/.ssh/id_rsa
Where ~/.ssh/id_rsa is the path to your private key

run
autosubmit run a000

The sequence of instructions to install Autosubmit and its dependencies with conda.

Warning

The following instructions are for Ubuntu 20.04 LTS. The instructions may vary for other UNIX distributions.

Warning

This procedure is still WIP. You can follow the process at issue #864 [https://earth.bsc.es/gitlab/es/autosubmit/-/issues/886]. We strongly recommend using the pip procedure.

If you don’t have conda installed yet, we recommend following Installing Miniconda [https://docs.conda.io/projects/miniconda/en/latest/index.html].

Download git
apt install git -y -q
Download autosubmit
git clone https://earth.bsc.es/gitlab/es/autosubmit.git -b v4.0.0b
cd autosubmit
Create a Conda environment from YAML with autosubmit dependencies
conda env create -f environment.yml -n autosubmitenv
Activate env
conda activate autosubmitenv
Install autosubmit
pip install autosubmit
Test autosubmit
autosubmit -v

For a very quick test, you can follow the next instructions to configure and run Autosubmit at the user level. Otherwise, please go directly to How to configure Autosubmit [https://autosubmit.readthedocs.io/en/master/installation/index.html#how-to-configure-autosubmit]

Quick-configure (user-level database)
autosubmit configure

Install
autosubmit install

Quick-start
Get expid
autosubmit expid -H "local" -d "Test exp in local."

Create with
Since it was a new install, the expid will be a000
autosubmit create a000

In case you want to use a remote platform

Generate a key pair for password-less ssh. PEM format is recommended as others can cause problems
ssh-keygen -t rsa -b 4096 -C "email@email.com" -m PEM

Copy the public key to the remote machine
ssh-copy-id -i ~/.ssh/id_rsa.pub user@remotehost

Add your key to ssh agent (if encrypted)
If not initialized, initialize it
eval `ssh-agent -s`
Add the key
ssh-add ~/.ssh/id_rsa
Where ~/.ssh/id_rsa is the path to your private key

run
autosubmit run a000

Hint

After installing the Conda, you may need to close the terminal and re-open it so the installation takes effect.

How to configure Autosubmit

There are two methods of configuring the Autosubmit main paths.

	autosubmit configure is suited for a personal/single user who wants to test Autosubmit in the scope of $HOME. It will generate an $HOME/.autosubmitrc file that overrides the machine configuration.

Manually generate an autosubmitrc file in one of these locations, which is the recommended method for a production environment with a shared database in a manner that multiple users can share and view others’ experiments.

	/etc/autosubmitrc, System level configuration.

	Set the environment variable AUTOSUBMIT_CONFIGURATION to the path of the autosubmitrc file. This will override all other configuration files.

Important

.autosubmitrc user level precedes system configuration unless the environment variable is set. AUTOSUBMIT_CONFIGURATION > $HOME/.autosubmitrc > /etc/autosubmitrc

Quick Installation - Non-shared database (user level)

After the package installation, you have to configure at least the database and path for Autosubmit.

To use the default settings, create a directory called autosubmit (mkdir $HOME/autosubmit) in your home directory before running the configure command.

autosubmit configure

autosubmit generate will always generate a file called .autosubmitrc in your $HOME.

You can add --advanced to the configure command for advanced options.

autosubmit configure --advanced

It will allow you to choose different directories:

	Experiments path and database name ($HOME/autosubmit/ by default) and database name ($HOME/autosubmit/autosubmit.db by default)

	Path for the global logs (those not belonging to any experiment). Default is $HOME/autosubmit/logs.

	Autosubmit metadata. Default is $HOME/autosubmit/metadata/

Additionally, it also provides the possibility of configuring an SMTP server and an email account to use the email notifications feature.

Hint

The dialog (GUI) library is optional. Otherwise, the configuration parameters will be prompted (CLI). Use autosubmit configure -h to see all the allowed options.

Example - Local - .autosubmitrc skeleton

[database]
path = /home/dbeltran/autosubmit
filename = autosubmit.db

[local]
path = /home/dbeltran/autosubmit

[globallogs]
path = /home/dbeltran/autosubmit/logs

[structures]
path = /home/dbeltran/autosubmit/metadata/structures

[historicdb]
path = /home/dbeltran/autosubmit/metadata/data

[historiclog]
path = /home/dbeltran/autosubmit/metadata/logs

Production environment installation - Shared-Filesystem database

Warning

Keep in mind the .autosubmitrc precedence. If you, as a user, have a .autosubmitrc generated in the quick-installation, you have to delete or rename it before using the production environment installation.

Create an /etc/autosubmitrc file or move it from $HOME/.autosubmitrc to /etc/autosubmitrc with the information as follows:

Mandatory parameters of /etc/autosubmit

[database]
Accessible for all users of the filesystem
path = <database_path>
Experiment database name can be whatever.
filename = autosubmit.db

Accessible for all users of the filesystem, can be the same as database_path
[local]
path = <experiment_path>

Global logs, logs without expid associated.
[globallogs]
path = /home/dbeltran/autosubmit/logs

This depends on your email server and can be left empty if not applicable
[mail]
smtp_server = mail.bsc.es
mail_from = automail@bsc.es

Recommendable parameters of /etc/autosubmit

The following parameters are the Autosubmit metadata, it is not mandatory, but it is recommendable to have them set up as some of them can positively affect the Autosubmit performance.

[structures]
path = /home/dbeltran/autosubmit/metadata/structures

[historicdb]
path = /home/dbeltran/autosubmit/metadata/data

[historiclog]
path = /home/dbeltran/autosubmit/metadata/logs

Optional parameters of /etc/autosubmit

These parameters provide extra functionalities to Autosubmit.

[conf]
Allows using a different jobs.yml default template on `autosubmit expid ``
jobs = <path_jobs>/jobs.yml
Allows using a different platforms.yml default template on `autosubmit expid `
platforms = <path_platforms>platforms.yml> path to any jobs.yml

Autosubmit API includes extra information for some Autosubmit functions. It is optional to have access to it to use Autosubmit.
[autosubmitapi]
Autosubmit API (The API is right now only provided inside the BSC network), which enables extra features for the Autosubmit GUI
url = <url of the Autosubmit API>:<port>

Used for controlling the traffic that comes from Autosubmit.
[hosts]
authorized = [<command1,commandN> <machine1,machineN>]
forbidden = [<command1,commandN> <machine1,machineN>]

About hosts parameters:

From 3.14+ onwards, the users can tailor Autosubmit commands to run on specific machines. Previously, only the run was affected by the deprecated whitelist parameter.

	authorized = [<command1,commandN> <machine1,machineN>] list of machines that can run given autosubmit commands. If the list is empty, all machines are allowed.

	forbidden = [<command1,commandN> <machine1,machineN>] list of machines that cannot run given autosubmit commands. If the list is empty, no machine is forbidden.

Example - BSC - /etc/autosubmitrc skeleton

[database]
path = /esarchive/autosubmit
filename = ecearth.db

[local]
path = /esarchive/autosubmit

[conf]
jobs = /esarchive/autosubmit/default
platforms = /esarchive/autosubmit/default

[mail]
smtp_server = mail.bsc.es
mail_from = automail@bsc.es

[hosts]
 authorized = [run bscearth000,bscesautosubmit01,bscesautosubmit02] [stats, clean, describe, check, report,dbfix,pklfix, upgrade,updateversion all]
 forbidden = [expìd, create, recovery, delete, inspect, monitor, recovery, migrate, configure,setstatus,testcase, test, refresh, archive, unarchive bscearth000,bscesautosubmit01,bscesautosubmit02]

Experiments database installation

As the last step, ensure to install the Autosubmit database. To do so, execute autosubmit install.

autosubmit install

This command will generate a blank database in the specified configuration path.

User Guide

	Create an Experiment
	Create new experiment

	Copy another experiment

	Create a dummy experiment

	Create a test case experiment

	Test the experiment

	How to profile Autosubmit while creating an experiment

	Configure Experiments
	How to configure experiments

	How to add a new job

	How to add a new heterogeneous job (hetjob)

	How to configure email notifications

	How to add a new platform

	How to request exclusivity or reservation

	How to set a custom interpreter for your job

	How to create and run only selected members

	Remote Dependencies - Presubmission feature
	How to configure

	Defining the workflow
	Simple workflow

	Running jobs once per startdate, member or chunk

	Dependencies
	Dependencies with previous jobs

	Dependencies between running levels

	Dependencies rework

	Start conditions

	Job frequency

	Job synchronize

	Job split

	Job delay

	Workflow examples:
	Example 1: How to select an specific chunk

	Example 2: SKIPPABLE

	Example 3: Weak dependencies

	Example 4: Select Member

	Loops definition

	Wrappers
	Basic configuration
	Wrapper parameters description
	Type

	Jobs_in_wrapper

	Method

	Extend_wallclock

	Retrials

	Queue

	Export

	Check_time_wrapper

	Number of jobs in a wrapper({MIN/MAX}_WRAPPED{_H/_V}

	Policy

	Vertical wrapper

	Horizontal wrapper

	Vertical-horizontal wrapper

	Horizontal-vertical wrapper
	Advanced example: Set-up an crossdate wrapper

	Running Experiments
	Run an experiment
	How to run an experiment that was created with another version

	How to run an experiment that was created with version <= 4.0.0

	How to run only selected members

	How to start an experiment at a given time

	How to start an experiment after another experiment is finished

	How to profile Autosubmit while running an experiment

	How to prepare an experiment to run in two independent job_list. (Priority jobs, Two-step-run) (OLD METHOD)
	Example using the old method

	How to prepare an experiment to run in two independent job_list. (New method)
	Simplified example using the new method

	Example 2: Crossdate wrappers using the the new dependencies

	How to stop the experiment

	How to restart the experiment
	How to rerun a part of the experiment

	Manage Experiments
	How to clean the experiment

	How to archive an experiment

	How to unarchive an experiment

	How to delete the experiment

	How to migrate an experiment

	How to refresh the experiment project

	How to update the description of your experiment

	How to change the job status
	How to change the job status without stopping autosubmit

	Monitor and Check Experiments
	How to check the experiment configuration
	How to use check in running time:

	How to generate cmd files
	Usage

	Example

	How to monitor an experiment

	Grouping jobs

	How to profile Autosubmit while monitoring an experiment

	How to get details about the experiment

	How to monitor job statistics
	Console output description

	Diagram output description

	Custom statistics

	How to extract information about the experiment parameters

	Configuration details, setup and sharing
	Experiment configuration

	Standard configuration structure

	Advanced configuration structure and restrictions

	How to create and share the configuration
	Standard Configuration

	Sharing a standard Configuration

	Advanced Configuration
	CUSTOM_CONFIG: Syntax

	Advanced configuration - Full dummy example (reproducible)
	Sharing an advanced configuration

	Variables reference
	Job variables
	Custom directives

	Platform variables

	Other variables

	Performance Metrics variables

	Experiment ID’s

	Provenance
	RO-Crate

Command list

	expid Create a new experiment

	create Create specified experiment workflow

	check Check configuration for specified experiment

	describe Show details for specified experiments

	run Run specified experiment

	inspect Generate cmd files

	test Test experiment

	testcase Test case experiment

	monitor Plot specified experiment

	stats Plot statistics for specified experiment

	setstatus Sets job status for an experiment

	recovery Recover specified experiment

	clean Clean specified experiment

	refresh Refresh project directory for an experiment

	delete Delete specified experiment

	configure Configure database and path for autosubmit

	install Install database for Autosubmit on the configured folder

	archive Clean, compress and remove from the experiments’ folder a finalized experiment

	unarchive Restores an archived experiment

	migrate_exp Migrates an experiment from one user to another

	report extract experiment parameters

	updateversion Updates the Autosubmit version of your experiment with the current version of the module you are using

	dbfix Fixes the database malformed error in the historical database of your experiment

	pklfix Fixed the blank pkl error of your experiment

	updatedescrip Updates the description of your experiment (See: How to update the description of your experiment)

Tutorials (How to)

	Create an Experiment

	Configure Experiments

	How to prepare an experiment to run in two independent job_list. (Priority jobs, Two-step-run) (OLD METHOD)

	How to restart the experiment

TODO add workflow_validation.

	How to monitor job statistics

	How to archive an experiment

	Advanced Configuration

Create an Experiment

Create new experiment

To create a new experiment, just run the command:

autosubmit expid -H HPCname -d Description

HPCname is the name of the main HPC platform for the experiment: it will be the default platform for the tasks.
Description is a brief experiment description.

Options:

usage: autosubmit expid [-h] [-y COPY | -dm | -min [-repo GIT_PATH -b BRANCH -config AS_CONF]] [-p PATH] -H HPC -d DESCRIPTION

 -h, --help show this help message and exit
 -y COPY, --copy COPY makes a copy of the specified experiment
 -op, -operational creates a new experiment, starting with "o"
 -dm, --dummy creates a new experiment with default values, usually for testing
 -min, --minimal_config
 creates a new experiment with minimal configuration files, usually for using a custom configuration
 -repo GIT_PATH, --git_repo GIT_PATH
 sets the git_repository
 -b BRANCH, --git_branch BRANCH
 sets the branch to use for the git repository
 -config, --git_as_conf
 sets the configuration folder to use for the experiment, relative to repo root
 -local, --use_local_minimal obtains the minimal configuration for local files
 -H HPC, --HPC HPC specifies the HPC to use for the experiment, default is localhost
 -d DESCRIPTION, --description DESCRIPTION
 sets a description for the experiment to store in the database.

Example:

autosubmit expid --HPC marenostrum4 --description "experiment is about..."
autosubmit expid -min -repo https://earth.bsc.es/gitlab/ces/auto-advanced_config_example -b main -conf as_conf -d "minimal config example"
autosubmit expid -dm -d "dummy test"

If there is an autosubmitrc or .autosubmitrc file in your home directory (cd ~), you can setup a default file from where the contents of platforms_expid.yml should be copied.

In this autosubmitrc or .autosubmitrc file, include the configuration setting custom_platforms:

Example:

conf:
 custom_platforms: /home/Earth/user/custom.yml

Where the specified path should be complete, as something you would get when executing pwd, and also include the filename of your custom platforms content.

Copy another experiment

This option makes a copy of an existing experiment.
It registers a new unique identifier and copies all configuration files in the new experiment folder:

autosubmit expid -y COPY -H HPCname -d Description
autosubmit expid -y COPY -c PATH -H HPCname -d Description

HPCname is the name of the main HPC platform for the experiment: it will be the default platform for the tasks.
COPY is the experiment identifier to copy from.
Description is a brief experiment description.
CONFIG is a folder that exists.

Example:

autosubmit expid -y cxxx -H ithaca -d "experiment is about..."
autosubmit expid -y cxxx -p "/esarchive/autosubmit/genericFiles/conf" -H marenostrum4 -d "experiment is about..."

Warning

You can only copy experiments created with Autosubmit 3.11 or above.

If there is an autosubmitrc or .autosubmitrc file in your home directory (cd ~), you can setup a default file from where the contents of platforms_expid.yml should be copied.

In this autosubmitrc or .autosubmitrc file, include the configuration setting custom_platforms:

Example:

conf:
custom_platforms: /home/Earth/user/custom.yml

Where the specified path should be complete, as something you would get when executing pwd, and also include the filename of your custom platforms content.

Create a dummy experiment

It is useful to test if Autosubmit is properly configured with a inexpensive experiment. A Dummy experiment will check,
test, and submit to the HPC platform, as any other experiment would.

The job submitted are only sleeps.

This command creates a new experiment with default values, useful for testing:

autosubmit expid -H HPCname -dm -d Description

HPCname is the name of the main HPC platform for the experiment: it will be the default platform for the tasks.
Description is a brief experiment description.

Example:

autosubmit expid -H ithaca -dm "experiment is about..."

Create a test case experiment

Test case experiments are special experiments which have a reserved first letter “t” at the expid. They are meant to
help differentiate testing suits of the automodels from normal runs.

This method is to create a test case experiment. It creates a new experiment for a test case with a
given number of chunks, start date, member and HPC.

To create a test case experiment, use the command:

autosubmit testcase

Options:

usage: autosubmit testcase [-h] [-y COPY] -d DESCRIPTION [-c CHUNKS]
 [-m MEMBER] [-s STARDATE] [-H HPC] [-b BRANCH]

 expid experiment identifier

 -h, --help show this help message and exit
 -c CHUNKS, --chunks CHUNKS
 chunks to run
 -m MEMBER, --member MEMBER
 member to run
 -s STARDATE, --stardate STARDATE
 stardate to run
 -H HPC, --HPC HPC HPC to run experiment on it
 -b BRANCH, --branch BRANCH
 branch from git to run (or revision from subversion)

Example:

autosubmit testcase -d "TEST CASE cca-intel auto-ecearth3 layer 0: T511L91-ORCA025L75-LIM3 (cold restart) (a092-a09n)" -H cca-intel -b 3.2.0b_develop -y a09n

Test the experiment

This method is to conduct a test for a given experiment. It creates a new experiment for a given experiment with a
given number of chunks with a random start date and a random member to be run on a random HPC.

To test the experiment, use the command:

autosubmit test CHUNKS EXPID

EXPID is the experiment identifier.
CHUNKS is the number of chunks to run in the test.

Options:

usage: autosubmit test [-h] -c CHUNKS [-m MEMBER] [-s STARDATE] [-H HPC] [-b BRANCH] expid

 expid experiment identifier

 -h, --help show this help message and exit
 -c CHUNKS, --chunks CHUNKS
 chunks to run
 -m MEMBER, --member MEMBER
 member to run
 -s STARDATE, --stardate STARDATE
 stardate to run
 -H HPC, --HPC HPC HPC to run experiment on it
 -b BRANCH, --branch BRANCH
 branch from git to run (or revision from subversion)

Example:

autosubmit test -c 1 -s 19801101 -m fc0 -H ithaca -b develop cxxx

How to profile Autosubmit while creating an experiment

Autosubmit offers the possibility to profile the experiment creation process. To enable the profiler, just
add the --profile (or -p) flag to your autosubmit create command, as in the following example:

autosubmit create --profile EXPID

Note

Remember that the purpose of this profiler is to measure the performance of Autosubmit,
not the jobs it runs.

This profiler uses Python’s cProfile and psutil modules to generate a report with simple CPU and
memory metrics which will be displayed in your console after the command finishes, as in the example below:

[image: Screenshot of the header of the profiler's output]

The profiler output is also saved in <EXPID>/tmp/profile. There you will find two files, the
report in plain text format and a .prof binary which contains the CPU metrics. We highly recommend
using SnakeViz [https://jiffyclub.github.io/snakeviz/] to visualize this file, as follows:

[image: The .prof file represented by the graphical library SnakeViz]

For more detailed documentation about the profiler, please visit this page.

Configure Experiments

How to configure experiments

Edit expdef_cxxx.yml, jobs_cxxx.yml and platforms_cxxx.yml in the conf folder of the experiment.

	expdef_cxxx.yml contains:
	
	Start dates, members and chunks (number and length).

	Experiment project source: origin (version control system or path)

	Project configuration file path.

	jobs_cxxx.yml contains the workflow to be run:
	
	Scripts to execute.

	Dependencies between tasks.

	Task requirements (processors, wallclock time…).

	Platform to use.

	platforms_cxxx.yml contains:
	
	HPC, fat-nodes and supporting computers configuration.

Note

platforms_cxxx.yml is usually provided by technicians, users will only have to change login and accounting options for HPCs.

You may want to configure Autosubmit parameters for the experiment. Just edit autosubmit_cxxx.yml.

	autosubmit_cxxx.yml contains:
	
	Maximum number of jobs to be running at the same time at the HPC.

	Time (seconds) between connections to the HPC queue scheduler to poll already submitted jobs status.

	Number of retrials if a job fails.

Then, Autosubmit create command uses the expdef_cxxx.yml and generates the experiment:
After editing the files you can proceed to the experiment workflow creation.
Experiment workflow, which contains all the jobs and its dependencies, will be saved as a pkl file:

autosubmit create EXPID

EXPID is the experiment identifier.

Options:

usage: autosubmit create [-group_by {date,member,chunk,split} -expand -expand_status] [-h] [-np] [-cw] expid

 expid experiment identifier

 -h, --help show this help message and exit
 -np, --noplot omit plot creation
 --hide, hide the plot
 -group_by {date,member,chunk,split,automatic}
 criteria to use for grouping jobs
 -expand, list of dates/members/chunks to expand
 -expand_status, status(es) to expand
 -nt --notransitive
 prevents doing the transitive reduction when plotting the workflow
 -cw --check_wrapper
 Generate the wrapper in the current workflow
 -d --detail
 Shows Job List view in terminal

Example:

autosubmit create cxxx

In order to understand more the grouping options, which are used for visualization purposes, please check Grouping jobs.

More info on pickle can be found at http://docs.python.org/library/pickle.html

How to add a new job

To add a new job, open the <experiments_directory>/cxxx/conf/jobs_cxxx.yml file where cxxx is the experiment
identifier and add this text:s

new_job:
 FILE: <new_job_template>

This will create a new job named “new_job” that will be executed once at the default platform. This job will use the
template located at <new_job_template> (path is relative to project folder).

This is the minimum job definition and usually is not enough. You usually will need to add some others parameters:

	PLATFORM: allows you to execute the job in a platform of your choice. It must be defined in the experiment’s
platforms.yml file or to have the value ‘LOCAL’ that always refer to the machine running Autosubmit

	RUNNING: defines if jobs runs only once or once per start-date, member or chunk. Options are: once, date,
member, chunk

	DEPENDENCIES: defines dependencies from job as a list of parents jobs separated by spaces. For example, if
‘new_job’ has to wait for “old_job” to finish, you must add the line “DEPENDENCIES: old_job”.

	For dependencies to jobs running in previous chunks, members or start-dates, use -(DISTANCE). For example, for a job “SIM” waiting for
the previous “SIM” job to finish, you have to add “DEPENDENCIES: SIM-1”.

	For dependencies that are not mandatory for the normal workflow behaviour, you must add the char ‘?’ at the end of the dependency.

For jobs running in HPC platforms, usually you have to provide information about processors, wallclock times and more.
To do this use:

	WALLCLOCK: wallclock time to be submitted to the HPC queue in format HH:MM

	PROCESSORS: processors number to be submitted to the HPC. If not specified, defaults to 1.

	THREADS: threads number to be submitted to the HPC. If not specified, defaults to 1.

	TASKS: tasks number to be submitted to the HPC. If not specified, defaults to 1.

	NODES: nodes number to be submitted to the HPC. If not specified, the directive is not added.

	HYPERTHREADING: Enables Hyper-threading, this will double the max amount of threads. defaults to false. (Not available on slurm platforms)

	QUEUE: queue to add the job to. If not specified, uses PLATFORM default.

	RETRIALS: Number of retrials if job fails

	DELAY_RETRY_TIME: Allows to put a delay between retries. Triggered when a job fails. If not specified, Autosubmit will retry the job as soon as possible. Accepted formats are: plain number (there will be a constant delay between retrials, of as many seconds as specified), plus (+) sign followed by a number (the delay will steadily increase by the addition of these number of seconds), or multiplication (*) sign follows by a number (the delay after n retries will be the number multiplied by 10*n). Having this in mind, the ideal scenario is to use +(number) or plain(number) in case that the HPC has little issues or the experiment will run for a little time. Otherwise, is better to use the *(number) approach.

#DELAY_RETRY_TIME: 11
#DELAY_RETRY_TIME: +11 # will wait 11 + number specified
#DELAY_RETRY_TIME:*11 # will wait 11,110,1110,11110...* by 10 to prevent a too big number

There are also other, less used features that you can use:

	FREQUENCY: specifies that a job has only to be run after X dates, members or chunk. A job will always be created for
the last one. If not specified, defaults to 1

	SYNCHRONIZE: specifies that a job with RUNNING: chunk, has to synchronize its dependencies chunks at a ‘date’ or
‘member’ level, which means that the jobs will be unified: one per chunk for all members or dates.
If not specified, the synchronization is for each chunk of all the experiment.

	RERUN_ONLY: determines if a job is only to be executed in reruns. If not specified, defaults to false.

	CUSTOM_DIRECTIVES: Custom directives for the HPC resource manager headers of the platform used for that job.

	SKIPPABLE: When this is true, the job will be able to skip it work if there is an higher chunk or member already ready, running, queuing or in complete status.

	EXPORT: Allows to run an env script or load some modules before running this job.

	EXECUTABLE: Allows to wrap a job for be launched with a set of env variables.

	QUEUE: queue to add the job to. If not specified, uses PLATFORM default.

	EXTENDED_HEADER_PATH: specify the path relative to the project folder where the extension to the autosubmit’s header is

	EXTENDED_TAILER_PATH: specify the path relative to the project folder where the extension to the autosubmit’s tailer is

How to add a new heterogeneous job (hetjob)

A hetjob, is a job in which each component has virtually all job options available including partition, account and QOS (Quality Of Service).For example, part of a job might require four cores and 4 GB for each of 128 tasks while another part of the job would require 16 GB of memory and one CPU.

This feature is only available for SLURM platforms. And it is automatically enabled when the processors or nodes paramater is a yaml list

To add a new hetjob, open the <experiments_directory>/cxxx/conf/jobs_cxxx.yml file where cxxx is the experiment

JOBS:
 new_hetjob:
 FILE: <new_job_template>
 PROCESSORS: # Determines the amount of components that will be created
 - 4
 - 1
 MEMORY: # Determines the amount of memory that will be used by each component
 - 4096
 - 16384
 WALLCLOCK: 00:30
 PLATFORM: <platform_name> # Determines the platform where the job will be executed
 PARTITION: # Determines the partition where the job will be executed
 - <partition_name>
 - <partition_name>
 TASKS: 128 # Determines the amount of tasks that will be used by each component

This will create a new job named “new_hetjob” with two components that will be executed once.

	EXTENDED_HEADER_PATH: specify the path relative to the project folder where the extension to the autosubmit’s header is

	EXTENDED_TAILER_PATH: specify the path relative to the project folder where the extension to the autosubmit’s tailer is

How to configure email notifications

To configure the email notifications, you have to follow two configuration steps:

	First you have to enable email notifications and set the accounts where you will receive it.

Edit autosubmit_cxxx.yml in the conf folder of the experiment.

Hint

Remember that you can define more than one email address divided by a whitespace.

Example:

vi <experiments_directory>/cxxx/conf/autosubmit_cxxx.yml

mail:
 # Enable mail notifications for remote_failures
 # Default:True
 NOTIFY_ON_REMOTE_FAIL: True
 # Enable mail notifications
 # Default: False
 NOTIFICATIONS: True
 # Mail address where notifications will be received
 TO: jsmith@example.com rlewis@example.com

	Then you have to define for which jobs you want to be notified.

Edit jobs_cxxx.yml in the conf folder of the experiment.

Hint

You will be notified every time the job changes its status to one of the statuses
defined on the parameter NOTIFY_ON

Hint

Remember that you can define more than one job status divided by a whitespace.

Example:

vi <experiments_directory>/cxxx/conf/jobs_cxxx.yml

JOBS:
 LOCAL_SETUP:
 FILE: LOCAL_SETUP.sh
 PLATFORM: LOCAL
 NOTIFY_ON: FAILED COMPLETED

How to add a new platform

Hint

If you are interested in changing the communications library, go to the section below.

To add a new platform, open the <experiments_directory>/cxxx/conf/platforms_cxxx.yml file where cxxx is the experiment
identifier and add this text:

PLATFORMS:
 new_platform:
 # MANDATORY
 TYPE: <platform_type>
 HOST: <host_name>
 PROJECT: <project>
 USER: <user>
 SCRATCH: <scratch_dir>
 MAX_WALLCLOCK: <HH:MM>
 QUEUE: <hpc_queue>
 # OPTIONAL
 ADD_PROJECT_TO_HOST: False
 MAX_PROCESSORS: <N>
 EC_QUEUE : <ec_queue> # only when type == ecaccess
 VERSION: <version>
 2FA: False
 2FA_TIMEOUT: <timeout> # default 300
 2FA_METHOD: <method>
 SERIAL_PLATFORM: <platform_name>
 SERIAL_QUEUE: <queue_name>
 BUDGET: <budget>
 TEST_SUITE: False
 MAX_WAITING_JOBS: <N>
 TOTAL_JOBS: <N>
 CUSTOM_DIRECTIVES: "['my_directive']"

This will create a platform named “new_platform”. The options specified are all mandatory:

	TYPE: queue type for the platform. Options supported are PBS, SGE, PS, LSF, ecaccess and SLURM.

	HOST: hostname of the platform

	PROJECT: project for the machine scheduler

	USER: user for the machine scheduler

	SCRATCH_DIR: path to the scratch directory of the machine

	MAX_WALLCLOCK: maximum wallclock time allowed for a job in the platform

	MAX_PROCESSORS: maximum number of processors allowed for a job in the platform

	EC_QUEUE: queue for the ecaccess platform. (hpc, ecs)

Warning

With some platform types, Autosubmit may also need the version, forcing you to add the parameter
VERSION. These platforms are PBS (options: 10, 11, 12) and ecaccess (options: pbs, loadleveler, slurm).

	VERSION: determines de version of the platform type

Warning

With some platforms, 2FA authentication is required. If this is the case, you have to add the parameter
2FA. These platforms are ecaccess (options: True, False). There may be some autosubmit functions that are not avaliable when using an interactive auth method.

	2FA: determines if the platform requires 2FA authentication. (default: False)

	2FA_TIMEOUT: determines the timeout for the 2FA authentication. (default: 300)

	2FA_METHOD: determines the method for the 2FA authentication. (default: token)

Some platforms may require to run serial jobs in a different queue or platform. To avoid changing the job
configuration, you can specify what platform or queue to use to run serial jobs assigned to this platform:

	SERIAL_PLATFORM: if specified, Autosubmit will run jobs with only one processor in the specified platform.

	SERIAL_QUEUE: if specified, Autosubmit will run jobs with only one processor in the specified queue. Autosubmit
will ignore this configuration if SERIAL_PLATFORM is provided

There are some other parameters that you may need to specify:

	BUDGET: budget account for the machine scheduler. If omitted, takes the value defined in PROJECT

	ADD_PROJECT_TO_HOST: option to add project name to host. This is required for some HPCs

	QUEUE: if given, Autosubmit will add jobs to the given queue instead of platform’s default queue

	TEST_SUITE: if true, autosubmit test command can use this queue as a main queue. Defaults to false

	MAX_WAITING_JOBS: maximum number of jobs to be waiting in this platform.

	TOTAL_JOBS: maximum number of jobs to be running at the same time in this platform.

	CUSTOM_DIRECTIVES: Custom directives for the resource manager of this platform.

How to request exclusivity or reservation

To request exclusivity or reservation for your jobs, you can configure two platform variables:

Edit platforms_cxxx.yml in the conf folder of the experiment.

Hint

Until now, it is only available for Marenostrum.

Hint

To define some jobs with exclusivity/reservation and some others without it, you can define
twice a platform, one with this parameters and another one without it.

Example:

vi <experiments_directory>/cxxx/conf/platforms_cxxx.yml

PLATFORMS:
 marenostrum3:
 TYPE: LSF
 HOST: mn-bsc32
 PROJECT: bsc32
 ADD_PROJECT_TO_HOST: false
 USER: bsc32XXX
 SCRATCH_DIR: /gpfs/scratch
 TEST_SUITE: True
 EXCLUSIVITY: True

Of course, you can configure only one or both. For example, for reservation it would be:

Example:

vi <experiments_directory>/cxxx/conf/platforms_cxxx.yml

PLATFORMS:
 marenostrum3:
 TYPE: LSF
 ...
 RESERVATION: your-reservation-id

How to set a custom interpreter for your job

If the remote platform does not implement the interpreter you need, you can customize the shebang of your job script so it points to the relative path of the interpreter you want.

In the file:

vi <experiments_directory>/cxxx/conf/jobs_cxxx.yml

JOBS:
 # Example job with all options specified

 ## Job name
 # JOBNAME:
 ## Script to execute. If not specified, job will be omitted from workflow. You can also specify additional files separated by a ",".
 # Note: The post processed additional_files will be sent to %HPCROOT%/LOG_%EXPID%
 ## Path relative to the project directory
 # FILE :
 ## Platform to execute the job. If not specified, defaults to HPCARCH in expdef file.
 ## LOCAL is always defined and refers to current machine
 # PLATFORM :
 ## Queue to add the job to. If not specified, uses PLATFORM default.
 # QUEUE :
 ## Defines dependencies from job as a list of parents jobs separated by spaces.
 ## Dependencies to jobs in previous chunk, member o startdate, use -(DISTANCE)
 # DEPENDENCIES: INI SIM-1 CLEAN-2
 ## Define if jobs runs once, once per stardate, once per member or once per chunk. Options: once, date, member, chunk.
 ## If not specified, defaults to once
 # RUNNING: once
 ## Specifies that job has only to be run after X dates, members or chunk. A job will always be created for the last
 ## If not specified, defaults to 1
 # FREQUENCY: 3
 ## On a job with FREQUENCY > 1, if True, the dependencies are evaluated against all
 ## jobs in the frequency interval, otherwise only evaluate dependencies against current
 ## iteration.
 ## If not specified, defaults to True
 # WAIT: False
 ## Defines if job is only to be executed in reruns. If not specified, defaults to false.
 # RERUN_ONLY: False
 ## Wallclock to be submitted to the HPC queue in format HH:MM
 # WALLCLOCK: 00:05
 ## Processors number to be submitted to the HPC. If not specified, defaults to 1.
 ## Wallclock chunk increase (WALLCLOCK will be increased according to the formula WALLCLOCK + WCHUNKINC * (chunk - 1)).
 ## Ideal for sequences of jobs that change their expected running time according to the current chunk.
 # WCHUNKINC: 00:01
 # PROCESSORS: 1
 ## Threads number to be submitted to the HPC. If not specified, defaults to 1.
 # THREADS: 1
 ## Tasks number to be submitted to the HPC. If not specified, defaults to 1.
 # Tasks: 1
 ## Enables hyper-threading. If not specified, defaults to false.
 # HYPERTHREADING: false
 ## Memory requirements for the job in MB
 # MEMORY: 4096
 ## Number of retrials if a job fails. If not specified, defaults to the value given on experiment's autosubmit.yml
 # RETRIALS: 4
 ## Allows to put a delay between retries, of retrials if a job fails. If not specified, it will be static
 # The ideal is to use the +(number) approach or plain(number) in case that the hpc platform has little issues or the experiment will run for a short period of time
 # And *(10) in case that the filesystem is having large delays or the experiment will run for a lot of time.
 # DELAY_RETRY_TIME: 11
 # DELAY_RETRY_TIME: +11 # will wait 11 + number specified
 # DELAY_RETRY_TIME: *11 # will wait 11,110,1110,11110...* by 10 to prevent a too big number
 ## Some jobs can not be checked before running previous jobs. Set this option to false if that is the case
 # CHECK: False
 ## Select the interpreter that will run the job. Options: bash, python, r Default: bash
 # TYPE: bash
 ## Specify the path to the interpreter. If empty, use system default based on job type . Default: empty
 # EXECUTABLE: /my_python_env/python3

You can give a path to the EXECUTABLE setting of your job. Autosubmit will replace the shebang with the path you provided.

Example:

JOBS:
 POST:
 FILE: POST.sh
 DEPENDENCIES: SIM
 RUNNING: chunk
 WALLCLOCK: 00:05
 EXECUTABLE: /my_python_env/python3

This job will use the python interpreter located in the relative path /my_python_env/python3/

It is also possible to use variables in the EXECUTABLE path.

Example:

JOBS:
 POST:
 FILE: POST.sh
 DEPENDENCIES: SIM
 RUNNING: chunk
 WALLCLOCK: 00:05
 EXECUTABLE: "%PROJDIR%/my_python_env/python3"

The result is a shebang line #!/esarchive/autosubmit/my_python_env/python3.

How to create and run only selected members

Your experiment is defined and correctly configured, but you want to create it only considering some selected members, and also to avoid creating the whole experiment to run only the members you want. Then, you can do it by configuring the setting RUN_ONLY_MEMBERS in the file:

vi <experiments_directory>/cxxx/conf/expdef_cxxx.yml

DEFAULT:
 # Experiment identifier
 # No need to change
 EXPID: cxxx
 # HPC name.
 # No need to change
 HPCARCH: ithaca

experiment:
 # Supply the list of start dates. Available formats: YYYYMMDD YYYYMMDDhh YYYYMMDDhhmm
 # Also you can use an abbreviated syntax for multiple dates with common parts:
 # 200001[01 15] <=> 20000101 20000115
 # DATELIST: 19600101 19650101 19700101
 # DATELIST: 1960[0101 0201 0301]
 DATELIST: 19900101
 # Supply the list of members. LIST: fc0 fc1 fc2 fc3 fc4
 MEMBERS: fc0
 # Chunk size unit. STRING: hour, day, month, year
 CHUNKSIZEUNIT: month
 # Chunk size. NUMERIC: 4, 6, 12
 CHUNKSIZE: 1
 # Total number of chunks in experiment. NUMERIC: 30, 15, 10
 NUMCHUNKS: 2
 # Calendar used. LIST: standard, noleap
 CALENDAR: standard
 # List of members that can be included in this run. Optional.
 # RUN_ONLY_MEMBERS: fc0 fc1 fc2 fc3 fc4
 # RUN_ONLY_MEMBERS: fc[0-4]
 RUN_ONLY_MEMBERS:

You can set the RUN_ONLY_MEMBERS value as shown in the format examples above it. Then, Job List generation is performed as usual. However, an extra step is performed that will filter the jobs according to RUN_ONLY_MEMBERS. It discards jobs belonging to members not considered in the value provided, and also we discard these jobs from the dependency tree (parents and children). The filtered Job List is returned.

The necessary changes have been implemented in the API so you can correctly visualize experiments implementing this new setting in Autosubmit GUI.

Important

Wrappers are correctly formed considering the resulting jobs.

Remote Dependencies - Presubmission feature

There is also the possibility of setting the option PRESUBMISSION to True in the config directive. This allows more
than one package containing simple or wrapped jobs to be submitted at the same time, even when the dependencies between
jobs aren’t yet satisfied.

This is only useful for cases when the job scheduler considers the time a job has been queuing to determine the job’s
priority (and the scheduler understands the dependencies set between the submitted packages). New packages can be
created as long as the total number of jobs are below than the number defined in the TOTALJOBS variable.

The jobs that are waiting in the remote platform, will be marked as HOLD.

How to configure

In autosubmit_cxxx.yml, regardless of the how your workflow is configured.

For example:

config:
 EXPID:
 AUTOSUBMIT_VERSION: 4.0.0
 ...
 MAXWAITINGJOBS: 100
 TOTALJOBS: 100
 ...

Defining the workflow

One of the most important step that you have to do when planning to use autosubmit for an experiment is the definition
of the workflow the experiment will use. In this section you will learn about the workflow definition syntax so you will
be able to exploit autosubmit’s full potential

Warning

This section is NOT intended to show how to define your jobs. Please go to Getting Started section for a comprehensive
list of job options.

Simple workflow

The simplest workflow that can be defined it is a sequence of two jobs, with the second one triggering at the end of
the first. To define it, we define the two jobs and then add a DEPENDENCIES attribute on the second job referring to the
first one.

It is important to remember when defining workflows that DEPENDENCIES on autosubmit always refer to jobs that should
be finished before launching the job that has the DEPENDENCIES attribute.

One:
 FILE: one.sh

Two:
 FILE: two.sh
 DEPENDENCIES: One

The resulting workflow can be seen in Fi165gure 1

[image: simple workflow plot]

1 Example showing a simple workflow with two sequential jobs

Running jobs once per startdate, member or chunk

Autosubmit is capable of running ensembles made of various startdates and members. It also has the capability to
divide member execution on different chunks.

To set at what level a job has to run you have to use the RUNNING attribute. It has four possible values: once, date,
member and chunk corresponding to running once, once per startdate, once per member or once per chunk respectively.

once:
 FILE: Once.sh

date:
 FILE: date.sh
 DEPENDENCIES: once
 RUNNING: date

member:
 FILE: Member.sh
 DEPENDENCIES: date
 RUNNING: member

chunk:
 FILE: Chunk.sh
 DEPENDENCIES: member
 RUNNING: chunk

The resulting workflow can be seen in Figure 2 for a experiment with 2 startdates, 2 members and 2 chunks.

[image: simple workflow plot]

2 Example showing how to run jobs once per startdate, member or chunk.

Dependencies

Dependencies on autosubmit were introduced on the first example, but in this section you will learn about some special
cases that will be very useful on your workflows.

Dependencies with previous jobs

Autosubmit can manage dependencies between jobs that are part of different chunks, members or startdates. The next
example will show how to make a simulation job wait for the previous chunk of the simulation. To do that, we add
sim-1 on the DEPENDENCIES attribute. As you can see, you can add as much dependencies as you like separated by spaces

ini:
 FILE: ini.sh
 RUNNING: member

sim:
 FILE: sim.sh
 DEPENDENCIES: ini sim-1
 RUNNING: chunk

postprocess:
 FILE: postprocess.sh
 DEPENDENCIES: sim
 RUNNING: chunk

The resulting workflow can be seen in Figure 3

Warning

Autosubmit simplifies the dependencies, so the final graph usually does not show all the lines that you may expect to
see. In this example you can see that there are no lines between the ini and the sim jobs for chunks 2 to 5 because
that dependency is redundant with the one on the previous sim

[image: simple workflow plot]

3 Example showing dependencies between sim jobs on different chunks.

Dependencies between running levels

On the previous examples we have seen that when a job depends on a job on a higher level (a running chunk job depending
on a member running job) all jobs wait for the higher running level job to be finished. That is the case on the ini sim dependency
on the next example.

In the other case, a job depending on a lower running level job, the higher level job will wait for ALL the lower level
jobs to be finished. That is the case of the postprocess combine dependency on the next example.

ini:
 FILE: ini.sh
 RUNNING: member

sim:
 FILE: sim.sh
 DEPENDENCIES: ini sim-1
 RUNNING: chunk

postprocess:
 FILE: postprocess.sh
 DEPENDENCIES: sim
 RUNNING: chunk

combine:
 FILE: combine.sh
 DEPENDENCIES: postprocess
 RUNNING: member

The resulting workflow can be seen in Figure 4

[image: simple workflow plot]

4 Example showing dependencies between jobs running at different levels.

Dependencies rework

The DEPENDENCIES key is used to define the dependencies of a job. It can be used in the following ways:

	Basic: The dependencies are a list of jobs, separated by “ “, that runs before the current task is submitted.

	New: The dependencies is a list of YAML sections, separated by “n”, that runs before the current job is submitted.

	For each dependency section, you can designate the following keywords to control the current job-affected tasks:

	DATES_FROM: Selects the job dates that you want to alter.

	MEMBERS_FROM: Selects the job members that you want to alter.

	CHUNKS_FROM: Selects the job chunks that you want to alter.

	For each dependency section and *_FROM keyword, you can designate the following keywords to control the destination of the dependency:

	DATES_TO: Links current selected tasks to the dependency tasks of the dates specified.

	MEMBERS_TO: Links current selected tasks to the dependency tasks of the members specified.

	CHUNKS_TO: Links current selected tasks to the dependency tasks of the chunks specified.

	Important keywords for [DATES|MEMBERS|CHUNKS]_TO:

	“natural”: Will keep the default linkage. Will link if it would be normally. Example, SIM_FC00_CHUNK_1 -> DA_FC00_CHUNK_1.

	“all”: Will link all selected tasks of the dependency with current selected tasks. Example, SIM_FC00_CHUNK_1 -> DA_FC00_CHUNK_1, DA_FC00_CHUNK_2, DA_FC00_CHUNK_3…

	“none”: Will unlink selected tasks of the dependency with current selected tasks.

For the new format, consider that the priority is hierarchy and goes like this DATES_FROM -(includes)-> MEMBERS_FROM -(includes)-> CHUNKS_FROM.

	You can define a DATES_FROM inside the DEPENDENCY.

	You can define a MEMBERS_FROM inside the DEPENDENCY and DEPENDENCY.DATES_FROM.

	You can define a CHUNKS_FROM inside the DEPENDENCY, DEPENDENCY.DATES_FROM, DEPENDENCY.MEMBERS_FROM, DEPENDENCY.DATES_FROM.MEMBERS_FROM

Start conditions

Sometimes you want to run a job only when a certain condition is met. For example, you may want to run a job only when a certain task is running.
This can be achieved using the START_CONDITIONS feature based on the dependencies rework.

Start conditions are achieved by adding the keyword STATUS and optionally FROM_STEP keywords into any dependency that you want.

The STATUS keyword can be used to select the status of the dependency that you want to check. The possible values (case-insensitive) are:

	“WAITING”: The task is waiting for its dependencies to be completed.

	“DELAYED”: The task is delayed by a delay condition.

	“PREPARED”: The task is prepared to be submitted.

	“READY”: The task is ready to be submitted.

	“SUBMITTED”: The task is submitted.

	“HELD”: The task is held.

	“QUEUING”: The task is queuing.

	“RUNNING”: The task is running.

	“SKIPPED”: The task is skipped.

	“FAILED”: The task is failed.

	“UNKNOWN”: The task is unknown.

	“COMPLETED”: The task is completed. # Default

	“SUSPENDED”: The task is suspended.

The status are ordered, so if you select “RUNNING” status, the task will be run if the parent is in any of the following statuses: “RUNNING”, “QUEUING”, “HELD”, “SUBMITTED”, “READY”, “PREPARED”, “DELAYED”, “WAITING”.

ini:
 FILE: ini.sh
 RUNNING: member

sim:
 FILE: sim.sh
 DEPENDENCIES: ini sim-1
 RUNNING: chunk

postprocess:
 FILE: postprocess.sh
 DEPENDENCIES:
 SIM:
 STATUS: "RUNNING"
 RUNNING: chunk

The FROM_STEP keyword can be used to select the internal step of the dependency that you want to check. The possible value is an integer. Additionally, the target dependency, must call to %AS_CHECKPOINT% inside their scripts. This will create a checkpoint that will be used to check the amount of steps processed.

A:
 FILE: a.sh
 RUNNING: once
 SPLITS: 2
A_2:
 FILE: a_2.sh
 RUNNING: once
 DEPENDENCIES:
 A:
 SPLIT_TO: "2"
 STATUS: "RUNNING"
 FROM_STEP: 2

There is now a new function that is automatically added in your scripts which is called as_checkpoint. This is the function that is generating the checkpoint file. You can see the function below:

###################
AS CHECKPOINT FUNCTION
###################
Creates a new checkpoint file upon call based on the current numbers of calls to the function

AS_CHECKPOINT_CALLS=0
function as_checkpoint {
 AS_CHECKPOINT_CALLS=$((AS_CHECKPOINT_CALLS+1))
 touch ${job_name_ptrn}_CHECKPOINT_${AS_CHECKPOINT_CALLS}
}

And what you would have to include in your target dependency or dependencies is the call to this function which in this example is a.sh.

The amount of calls is strongly related to the FROM_STEP value.

$expid/proj/$projname/as.sh

##compute somestuff
as_checkpoint
compute some more stuff
as_checkpoint

To select an specific task, you have to combine the STATUS and CHUNKS_TO , MEMBERS_TO and DATES_TO, SPLITS_TO keywords.

A:
 FILE: a
 RUNNING: once
 SPLITS: 1
B:
 FILE: b
 RUNNING: once
 SPLITS: 2
 DEPENDENCIES: A
C:
 FILE: c
 RUNNING: once
 SPLITS: 1
 DEPENDENCIES: B
RECOVER_B_2:
 FILE: fix_b
 RUNNING: once
 DEPENDENCIES:
 B:
 SPLIT_TO: "2"
 STATUS: "RUNNING"

Job frequency

Some times you just don’t need a job to be run on every chunk or member. For example, you may want to launch the postprocessing
job after various chunks have completed. This behaviour can be achieved using the FREQUENCY attribute. You can specify
an integer I for this attribute and the job will run only once for each I iterations on the running level.

Hint

You don’t need to adjust the frequency to be a divisor of the total jobs. A job will always execute at the last
iteration of its running level

ini:
 FILE: ini.sh
 RUNNING: member

sim:
 FILE: sim.sh
 DEPENDENCIES: ini sim-1
 RUNNING: chunk

postprocess:
 FILE: postprocess.sh
 DEPENDENCIES: sim
 RUNNING: chunk
 FREQUENCY: 3

combine:
 FILE: combine.sh
 DEPENDENCIES: postprocess
 RUNNING: member

The resulting workflow can be seen in Figure 5

[image: simple workflow plot]

5 Example showing dependencies between jobs running at different frequencies.

Job synchronize

For jobs running at chunk level, and this job has dependencies, you could want
not to run a job for each experiment chunk, but to run once for all member/date dependencies, maintaining
the chunk granularity. In this cases you can use the SYNCHRONIZE job parameter to determine which kind
of synchronization do you want. See the below examples with and without this parameter.

Hint

This job parameter works with jobs with RUNNING parameter equals to ‘chunk’.

ini:
 FILE: ini.sh
 RUNNING: member

sim:
 FILE: sim.sh
 DEPENDENCIES: INI SIM-1
 RUNNING: chunk

ASIM:
 FILE: asim.sh
 DEPENDENCIES: SIM
 RUNNING: chunk

The resulting workflow can be seen in Figure 6

[image: simple workflow plot]

6 Example showing dependencies between chunk jobs running without synchronize.

ASIM:
 SYNCHRONIZE: member

The resulting workflow of setting SYNCHRONIZE parameter to ‘member’ can be seen in Figure 7

[image: simple workflow plot]

7 Example showing dependencies between chunk jobs running with member synchronize.

ASIM:
 SYNCHRONIZE: date

The resulting workflow of setting SYNCHRONIZE parameter to ‘date’ can be seen in Figure 8

[image: simple workflow plot]

8 Example showing dependencies between chunk jobs running with date synchronize.

Job split

For jobs running at any level, it may be useful to split each task into different parts.
This behaviour can be achieved using the SPLITS attribute to specify the number of parts.

It is also possible to specify the splits for each task using the SPLITS_FROM and SPLITS_TO attributes.

There is also an special character ‘*’ that can be used to specify that the split is 1-to-1 dependency. In order to use this character, you have to specify both SPLITS_FROM and SPLITS_TO attributes.

ini:
 FILE: ini.sh
 RUNNING: once

sim:
 FILE: sim.sh
 DEPENDENCIES: ini sim-1
 RUNNING: once

asim:
 FILE: asim.sh
 DEPENDENCIES: sim
 RUNNING: once
 SPLITS: 3

post:
 FILE: post.sh
 RUNNING: once
 DEPENDENCIES:
 asim:
 SPLITS_FROM:
 2,3: # [2:3] is also valid
 splits_to: 1,2*,3* # 1,[2:3]* is also valid, you can also specify the step with [2:3:step]
 SPLITS: 3

In this example:

Post job will be split into 2 parts.
Each part will depend on the 1st part of the asim job.
The 2nd part of the post job will depend on the 2nd part of the asim job.
The 3rd part of the post job will depend on the 3rd part of the asim job.

[image: 1-to-1]

Example2: N-to-1 dependency

TEST:
 FILE: TEST.sh
 RUNNING: once
 SPLITS: '4'
TEST2:
 FILE: TEST2.sh
 DEPENDENCIES:
 TEST:
 SPLITS_FROM:
 "[1:2]":
 SPLITS_TO: "[1:4]*\\2"
 RUNNING: once
 SPLITS: '2'

[image: N_to_1]

Example3: 1-to-N dependency

TEST:
 FILE: TEST.sh
 RUNNING: once
 SPLITS: '2'
TEST2:
 FILE: TEST2.sh
 DEPENDENCIES:
 TEST:
 SPLITS_FROM:
 "[1:4]":
 SPLITS_TO: "[1:2]*\\2"
 RUNNING: once
 SPLITS: '4'

[image: 1_to_N]

Job delay

Some times you need a job to be run after a certain number of chunks. For example, you may want to launch the asim
job after various chunks have completed. This behaviour can be achieved using the DELAY attribute. You can specify
an integer N for this attribute and the job will run only after N chunks.

Hint

This job parameter works with jobs with RUNNING parameter equals to ‘chunk’.

ini:
 FILE: ini.sh
 RUNNING: member

sim:
 FILE: sim.sh
 DEPENDENCIES: ini sim-1
 RUNNING: chunk

asim:
 FILE: asim.sh
 DEPENDENCIES: sim asim-1
 RUNNING: chunk
 DELAY: 2

post:
 FILE: post.sh
 DEPENDENCIES: sim asim
 RUNNING: chunk

The resulting workflow can be seen in Figure 9

[image: simple workflow with delay option]

9 Example showing the asim job starting only from chunk 3.

Workflow examples:

Example 1: How to select an specific chunk

Warning

This example illustrates the old select_chunk.

SIM:
 FILE: templates/sim.tmpl.sh
 DEPENDENCIES: INI SIM-1 POST-1 CLEAN-5
 INI:
 SIM-1:
 POST-1:
 CHUNKS_FROM:
 all:
 chunks_to: 1
 CLEAN-5:
 RUNNING: chunk
 WALLCLOCK: 0:30
 PROCESSORS: 768

[image: select_chunks_workflow]

Example 2: SKIPPABLE

In this workflow you can see an illustrated example of SKIPPABLE parameter used in an dummy workflow.

JOBS:
 SIM:
 FILE: sim.sh
 DEPENDENCIES: INI POST-1
 WALLCLOCK: 00:15
 RUNNING: chunk
 QUEUE: debug
 SKIPPABLE: TRUE

 POST:
 FILE: post.sh
 DEPENDENCIES: SIM
 WALLCLOCK: 00:05
 RUNNING: member
 #QUEUE: debug

[image: skip_workflow]

Example 3: Weak dependencies

In this workflow you can see an illustrated example of weak dependencies.

Weak dependencies, work like this way:

	X job only has one parent. X job parent can have “COMPLETED or FAILED” as status for current job to run.

	X job has more than one parent. One of the X job parent must have “COMPLETED” as status while the rest can be “FAILED or COMPLETED”.

JOBS:
 GET_FILES:
 FILE: templates/fail.sh
 RUNNING: chunk

 IT:
 FILE: templates/work.sh
 RUNNING: chunk
 QUEUE: debug

 CALC_STATS:
 FILE: templates/work.sh
 DEPENDENCIES: IT GET_FILES?
 RUNNING: chunk
 SYNCHRONIZE: member

[image: dashed_workflow]

Example 4: Select Member

In this workflow you can see an illustrated example of select member. Using 4 members 1 datelist and 4 different job sections.

Expdef:

experiment:
 DATELIST: 19600101
 MEMBERS: "00 01 02 03"
 CHUNKSIZE: 1
 NUMCHUNKS: 2

Jobs_conf:

JOBS:
 SIM:
 ...
 RUNNING: chunk
 QUEUE: debug

 DA:
 ...
 DEPENDENCIES:
 SIM:
 members_from:
 all:
 members_to: 00,01,02
 RUNNING: chunk
 SYNCHRONIZE: member

 REDUCE:
 ...
 DEPENDENCIES:
 SIM:
 members_from:
 all:
 members_to: 03
 RUNNING: member
 FREQUENCY: 4

 REDUCE_AN:
 ...
 FILE: templates/05b_sim.sh
 DEPENDENCIES: DA
 RUNNING: chunk
 SYNCHRONIZE: member

[image: select_members]

Loops definition

You need to use the FOR and NAME keys to define a loop.

To generate the following jobs:

experiment:
 DATELIST: 19600101
 MEMBERS: "00"
 CHUNKSIZEUNIT: day
 CHUNKSIZE: '1'
 NUMCHUNKS: '2'
 CALENDAR: standard
JOBS:
 POST_20:

 DEPENDENCIES:
 POST_20:
 SIM_20:
 FILE: POST.sh
 PROCESSORS: '20'
 RUNNING: chunk
 THREADS: '1'
 WALLCLOCK: 00:05
 POST_40:

 DEPENDENCIES:
 POST_40:
 SIM_40:
 FILE: POST.sh
 PROCESSORS: '40'
 RUNNING: chunk
 THREADS: '1'
 WALLCLOCK: 00:05
 POST_80:

 DEPENDENCIES:
 POST_80:
 SIM_80:
 FILE: POST.sh
 PROCESSORS: '80'
 RUNNING: chunk
 THREADS: '1'
 WALLCLOCK: 00:05
 SIM_20:

 DEPENDENCIES:
 SIM_20-1:
 FILE: POST.sh
 PROCESSORS: '20'
 RUNNING: chunk
 THREADS: '1'
 WALLCLOCK: 00:05
 SIM_40:

 DEPENDENCIES:
 SIM_40-1:
 FILE: POST.sh
 PROCESSORS: '40'
 RUNNING: chunk
 THREADS: '1'
 WALLCLOCK: 00:05
 SIM_80:

 DEPENDENCIES:
 SIM_80-1:
 FILE: POST.sh
 PROCESSORS: '80'
 RUNNING: chunk
 THREADS: '1'
 WALLCLOCK: 00:05

One can use now the following configuration:

experiment:
 DATELIST: 19600101
 MEMBERS: "00"
 CHUNKSIZEUNIT: day
 CHUNKSIZE: '1'
 NUMCHUNKS: '2'
 CALENDAR: standard
JOBS:
 SIM:
 FOR:
 NAME: [20,40,80]
 PROCESSORS: [20,40,80]
 THREADS: [1,1,1]
 DEPENDENCIES: [SIM_20-1,SIM_40-1,SIM_80-1]
 FILE: POST.sh
 RUNNING: chunk
 WALLCLOCK: '00:05'
 POST:
 FOR:
 NAME: [20,40,80]
 PROCESSORS: [20,40,80]
 THREADS: [1,1,1]
 DEPENDENCIES: [SIM_20 POST_20,SIM_40 POST_40,SIM_80 POST_80]
 FILE: POST.sh
 RUNNING: chunk
 WALLCLOCK: '00:05'

Warning

The mutable parameters must be inside the FOR key.

[image: for]

Wrappers

Job packages, or “wrappers”, are jobs created as bundles of different tasks (submitted at once in a single script to the platform) assembled by Autosubmit to maximize the usage of platforms managed by a scheduler (by minimizing the queuing time between consecutive or concurrent tasks). Autosubmit supports four wrapper types that can be used depending on the experiment’s workflow.

	Horizontal

	Vertical

	Horizontal-vertical

	Vertical-horizontal

Note

To have a preview of wrappers, you must use the parameter -cw available on inspect, monitor, and create.

autosubmit create <expid> -cw # Unstarted experiment
autosubmit monitor <expid> -cw # Ongoing experiment
autosubmit inspect <expid> -cw -f # Visualize wrapper cmds

Basic configuration

To configure a new wrapper, the user has to define a WRAPPERS section in any configuration file. When using the standard configuration, this one is autosubmit.yml.

WRAPPERS:
 WRAPPER_0:
 TYPE: "horizontal"

By default, Autosubmit will try to bundle jobs of the same type. The user can alter this behavior by setting the JOBS_IN_WRAPPER parameter directive in the wrapper section.

When using multiple wrappers or 2-dim wrappers is essential to define the JOBS_IN_WRAPPER parameter.

WRAPPERS:
 WRAPPER_H:
 TYPE: "horizontal"
 JOBS_IN_WRAPPER: "SIM"
 WRAPPER_V:
 TYPE: "vertical"
 JOBS_IN_WRAPPER: "SIM2"
 WRAPPER_VH:
 TYPE: "vertical-horizontal"
 JOBS_IN_WRAPPER: "SIM3 SIM4"
 WRAPPER_HV:
 TYPE: "horizontal-vertical"
 JOBS_IN_WRAPPER: "SIM5 SIM6"

experiment:
 DATELIST: 20220101
 MEMBERS: "fc0 fc1"
 CHUNKSIZEUNIT: day
 CHUNKSIZE: '1'
 NUMCHUNKS: '4'
 CALENDAR: standard
JOBS:
 SIM:
 FILE: sim.sh
 RUNNING: chunk
 QUEUE: debug
 DEPENDENCIES: SIM-1
 WALLCLOCK: 00:15
 SIM2:
 FILE: sim.sh
 RUNNING: chunk
 QUEUE: debug
 DEPENDENCIES: SIM2-1
 WALLCLOCK: 00:15
 SIM3:
 FILE: sim.sh
 RUNNING: chunk
 QUEUE: debug
 DEPENDENCIES: SIM3-1
 WALLCLOCK: 00:15
 SIM4:
 FILE: sim.sh
 RUNNING: chunk
 QUEUE: debug
 DEPENDENCIES: SIM4-1
 WALLCLOCK: 00:15
 SIM5:
 FILE: sim.sh
 RUNNING: chunk
 QUEUE: debug
 DEPENDENCIES: SIM5-1
 WALLCLOCK: 00:15
 SIM6:
 FILE: sim.sh
 RUNNING: chunk
 QUEUE: debug
 DEPENDENCIES: SIM6-1
 WALLCLOCK: 00:15

[image: wrapper all]

Important

Autosubmit will not wrap tasks with external and non-fulfilled dependencies.

Wrapper parameters description

Type

The type parameter allow the user to determine the wrapper algorithm.

It affects tasks in wrapper order executions, and in hybrid cases, it adds some internal logic.

WRAPPERS:
 WRAPPER_0:
 TYPE: "horizontal"

Jobs_in_wrapper

The jobs_in_wrapper parameter allow the user to determine the tasks inside a wrapper by giving the job_section name. It can group multiple tasks by providing more than one job_section name.

WRAPPERS:
 WRAPPER_0:
 TYPE: "horizontal"
 JOBS_IN_WRAPPER: "SIM"

Method

The method parameter allow the user to determine if the wrapper will use machine files or threads.

This allows to form a wrapper with that relies on machinefiles to work.

WRAPPERS:
 WRAPPER_0:
 TYPE: "horizontal"
 JOBS_IN_WRAPPER: "SIM"
 METHOD: ASTHREAD

or

WRAPPERS:
 WRAPPER_0:
 TYPE: "horizontal"
 JOBS_IN_WRAPPER: "SIM"

This allows to form a wrapper with shared-memory paradigm instead of rely in machinefiles to work in parallel.

WRAPPERS:
 WRAPPER_0:
 TYPE: "horizontal"
 JOBS_IN_WRAPPER: "SIM"
 METHOD: SRUN

Extend_wallclock

The extend_wallclock parameter allow the users to provide extra headroom for the wrapper. The accepted value is an integer. Autosubmit will translate this value automatically to the max_wallclock of the sum of wrapper inner-tasks wallclock at the horizontal level.

WRAPPERS:
 WRAPPER_0:
 TYPE: "horizontal"
 JOBS_IN_WRAPPER: "SIM"
 extend_wallclock: 1

Retrials

The retrials parameter allows the users to enable or disable the wrapper’s retrial mechanism. This value overrides the general tasks defined.

Vertical wrappers will retry the jobs without resubmitting the wrapper.

WRAPPERS:
 WRAPPER_0:
 TYPE: "horizontal"
 JOBS_IN_WRAPPER: "SIM"
 RETRIALS: 2

Queue

The queue parameter allows the users to define a different queue for the wrapper. This value overrides the platform queue and job queue.

WRAPPERS:
 WRAPPER_0:
 TYPE: "horizontal"
 JOBS_IN_WRAPPER: "SIM"
 QUEUE: BSC_ES

Export

The queue parameter allows the users to define a path to a script that will load environment scripts before running the wrapper tasks. This value overrides the job queue.

WRAPPERS:
 WRAPPER_0:
 TYPE: "horizontal"
 JOBS_IN_WRAPPER: "SIM"
 EXPORT: "%CURRENT_ROOTDIR%/envmodules.sh"

Check_time_wrapper

The CHECK_TIME_WRAPPER parameter defines the frequency, in seconds, on which Autosubmit will check the remote platform status of all the wrapper tasks. This affects all wrappers.

WRAPPERS:
 CHECK_TIME_WRAPPER: 10
 WRAPPER_0:
 TYPE: "horizontal"
 JOBS_IN_WRAPPER: "SIM"
 WRAPPER_1:
 TYPE: "vertical"
 JOBS_IN_WRAPPER: "SIM1"

Number of jobs in a wrapper({MIN/MAX}_WRAPPED{_H/_V}

Users can configure the maximum and the minimum number of jobs in each wrapper by configuring MAX_WRAPPED and MIN_WRAPPED inside the wrapper section. If the user doesn’t set them, Autosubmit will default to MAX_WRAPPED: “infinite” and MIN_WRAPPED: 2.

WRAPPERS:
 MIN_WRAPPED: 2
 MAX_WRAPPED: 999999
 WRAPPER_0:
 MAX_WRAPPED: 2
 TYPE: "horizontal"
 JOBS_IN_WRAPPER: "SIM"
 WRAPPER_1:
 TYPE: "vertical"
 JOBS_IN_WRAPPER: "SIM1"

For 2-dim wrappers, {MAX_MIN}_WRAPPED_{V/H} must be used instead of the general one.

WRAPPERS:
 MIN_WRAPPED: 2
 MAX_WRAPPED: 999999
 WRAPPER_0:
 MAX_WRAPPED_H: 2
 MAX_WRAPPED_V: 4
 MIN_WRAPPED_H: 2
 MIN_WRAPPED_V: 2
 TYPE: "horizontal-vertical"
 JOBS_IN_WRAPPER: "SIM SIM1"

Policy

Autosubmit will wrap as many tasks as possible while respecting the limits set in the configuration(MAX_WRAPPED, MAX_WRAPPED_H, MAX_WRAPPED_V, MIN_WRAPPED, MIN_WRAPPED_V, and MIN_WRAPPED_H parameters). However, users have three different policies available to tune the behavior in situations where there aren’t enough tasks in general, or there are uncompleted tasks remaining from a failed wrapper job:

	Flexible: if there aren’t at least MIN_WRAPPED tasks to be grouped, Autosubmit will submit them as individual jobs.

	Mixed: will wait for MIN_WRAPPED jobs to be available to create a wrapper, except if one of the wrapped tasks had failed beforehand. In this case, Autosubmit will submit them individually.

	Strict: will always wait for MIN_WRAPPED tasks to be ready to create a wrapper.

WRAPPERS:
 POLICY: "flexible"
 WRAPPER_0:
 TYPE: "vertical"
 JOBS_IN_WRAPPER: "SIM SIM1"

Vertical wrapper

Vertical wrappers are suited for sequential dependent jobs (e.x. chunks of SIM tasks that depend on the previous chunk). Defining the platform’s MAX_WALLCLOCK is essential since the wrapper’s total wallclock time will be the sum of each job and will be a limiting factor for the creation of the wrapper, which will not bundle more jobs than the ones fitting in the wallclock time.

Autosubmit supports wrapping together vertically jobs of different types.

WRAPPERS:
 WRAPPER_V:
 TYPE: "vertical"
 JOBS_IN_WRAPPER: "SIM"

[image: wrapper vertical]

Horizontal wrapper

Horizontal wrappers are suited for jobs that must run parallel (e.x. members of SIM tasks). Defining the platform’s MAX_PROCESSORS is essential since the wrapper processor amount will be the sum of each job and will be a limiting factor for the creation of the wrapper, which will not bundle more jobs than the ones fitting in the MAX_PROCESSORS of the platform.

WRAPPERS:
 WRAPPER_H:
 TYPE: "horizontal"
 JOBS_IN_WRAPPER: "SIM"

[image: wrapper horizontal]

Vertical-horizontal wrapper

The vertical-horizontal wrapper allows bundling together a vertical sequence of tasks independent of the horizontal ones. Therefore, all horizontal tasks do not need to finish to progress to the next horizontal level.

[image: wrapper vertical-horizontal]

Horizontal-vertical wrapper

The horizontal-vertical wrapper allows bundling together tasks that could run simultaneously but need to communicate before progressing to the next horizontal level.

[image: wrapper horizontal-vertical]

Advanced example: Set-up an crossdate wrapper

Considering the following configuration:

experiment:
 DATELIST: 20120101 20120201
 MEMBERS: "000 001"
 CHUNKSIZEUNIT: day
 CHUNKSIZE: '1'
 NUMCHUNKS: '3'

JOBS:
 LOCAL_SETUP:
 FILE: templates/local_setup.sh
 PLATFORM: marenostrum_archive
 RUNNING: once
 NOTIFY_ON: COMPLETED
 LOCAL_SEND_SOURCE:
 FILE: templates/01_local_send_source.sh
 PLATFORM: marenostrum_archive
 DEPENDENCIES: LOCAL_SETUP
 RUNNING: once
 NOTIFY_ON: FAILED
 LOCAL_SEND_STATIC:
 FILE: templates/01b_local_send_static.sh
 PLATFORM: marenostrum_archive
 DEPENDENCIES: LOCAL_SETUP
 RUNNING: once
 NOTIFY_ON: FAILED
 REMOTE_COMPILE:
 FILE: templates/02_compile.sh
 DEPENDENCIES: LOCAL_SEND_SOURCE
 RUNNING: once
 PROCESSORS: '4'
 WALLCLOCK: 00:50
 NOTIFY_ON: COMPLETED
 SIM:
 FILE: templates/05b_sim.sh
 DEPENDENCIES:
 LOCAL_SEND_STATIC:
 REMOTE_COMPILE:
 SIM-1:
 DA-1:
 RUNNING: chunk
 PROCESSORS: '68'
 WALLCLOCK: 00:12
 NOTIFY_ON: FAILED
 LOCAL_SEND_INITIAL_DA:
 FILE: templates/00b_local_send_initial_DA.sh
 PLATFORM: marenostrum_archive
 DEPENDENCIES: LOCAL_SETUP LOCAL_SEND_INITIAL_DA-1
 RUNNING: chunk
 SYNCHRONIZE: member
 DELAY: '0'
 COMPILE_DA:
 FILE: templates/02b_compile_da.sh
 DEPENDENCIES: LOCAL_SEND_SOURCE
 RUNNING: once
 WALLCLOCK: 00:20
 NOTIFY_ON: FAILED
 DA:
 FILE: templates/05c_da.sh
 DEPENDENCIES:
 SIM:
 LOCAL_SEND_INITIAL_DA:
 CHUNKS_TO: "all"
 DATES_TO: "all"
 MEMBERS_TO: "all"
 COMPILE_DA:
 DA:
 DATES_FROM:
 "20120201":
 CHUNKS_FROM:
 1:
 DATES_TO: "20120101"
 CHUNKS_TO: "1"
 RUNNING: chunk
 SYNCHRONIZE: member
 DELAY: '0'
 WALLCLOCK: 00:12
 PROCESSORS: '256'
 NOTIFY_ON: FAILED

wrappers:
 wrapper_simda:
 TYPE: "horizontal-vertical"
 JOBS_IN_WRAPPER: "SIM DA"

[image: crossdate-example]

Running Experiments

Run an experiment

Launch Autosubmit with the command:

Add your key to ssh agent (if encrypted)
ssh-add ~/.ssh/id_rsa
autosubmit run EXPID

In the previous command output EXPID is the experiment identifier. The command
exits with 0 when the workflow finishes with no failed jobs, and with 1
otherwise.

Options:

usage: autosubmit run [-h] expid

 expid experiment identifier
 -nt --notransitive
 prevents doing the transitive reduction when plotting the workflow
 -v --update_version
 update the experiment version to match the actual autosubmit version
 -st --start_time
 Sets the starting time for the experiment. Accepted format: 'yyyy-mm-dd HH:MM:SS' or 'HH:MM:SS' (defaults to current day).
 -sa --start_after
 Sets a experiment expid that will be tracked for completion. When this experiment is completed, the current instance of Autosubmit run will start.
 -rom,--run_only_members --run_members
 Sets a list of members allowed to run. The list must have the format '### ###' where '###' represents the name of the member as set in the conf files.
 -h, --help show this help message and exit

Example:

Add your key to ssh agent (if encrypted)
ssh-add ~/.ssh/id_rsa
autosubmit run cxxx

Important

If the autosubmit version is set on autosubmit.yml it must match the actual autosubmit version

Hint

It is recommended to launch it in background and with nohup (continue running although the user who launched the process logs out).

Add your key to ssh agent (if encrypted)
ssh-add ~/.ssh/id_rsa
nohup autosubmit run cxxx &

Important

Before launching Autosubmit check password-less ssh is feasible (HPCName is the hostname):

Important

Add encryption key to ssh agent for each session (if your ssh key is encrypted)

Important

The host machine has to be able to access HPC’s/Clusters via password-less ssh. Make sure that the ssh key is in PEM format ssh-keygen -t rsa -b 4096 -C “email@email.com” -m PEM.

ssh HPCName

More info on password-less ssh can be found at: http://www.linuxproblem.org/art_9.html

Caution

After launching Autosubmit, one must be aware of login expiry limit and policy (if applicable for any HPC) and renew the login access accordingly (by using token/key etc) before expiry.

How to run an experiment that was created with another version

Important

First of all you have to stop your Autosubmit instance related with the experiment

Once you’ve already loaded / installed the Autosubmit version do you want:

autosubmit create $EXPID -np
autosubmit recovery $EXPID -s --all -f -np
Add your key to ssh agent (if encrypted)
ssh-add ~/.ssh/id_rsa
autosubmit run $EXPID -v
or
autosubmit updateversion $EXPID
Add your key to ssh agent (if encrypted)
ssh-add ~/.ssh/id_rsa
autosubmit run $EXPID -v

EXPID is the experiment identifier.
The most common problem when you change your Autosubmit version is the apparition of several Python errors.
This is due to how Autosubmit saves internally the data, which can be incompatible between versions.
The steps above represent the process to re-create (1) these internal data structures and to recover (2) the previous status of your experiment.

How to run an experiment that was created with version <= 4.0.0

Important

First of all you have to stop your Autosubmit instance related with the experiment.

Once you’ve already loaded / installed the Autosubmit version do you want:

autosubmit upgrade $expid
autosubmit create $EXPID -np
autosubmit recovery $EXPID -s --all -f -np
Add your key to ssh agent (if encrypted)
ssh-add ~/.ssh/id_rsa
autosubmit run $EXPID -v
or
autosubmit updateversion $EXPID
Add your key to ssh agent (if encrypted)
ssh-add ~/.ssh/id_rsa
autosubmit run $EXPID -v

EXPID is the experiment identifier.
The most common problem when you upgrade an experiment with INI configuration to YAML is that some variables may be not automatically translated.
Ensure that all your $EXPID/conf/*.yml files are correct and also revise the templates in $EXPID/proj/$proj_name.

How to run only selected members

To run only a subset of selected members you can execute the command:

Add your key to ssh agent (if encrypted)
ssh-add ~/.ssh/id_rsa
autosubmit run EXPID -rom MEMBERS

EXPID is the experiment identifier, the experiment you want to run.

MEMBERS is the selected subset of members. Format “member1 member2 member2”, example: “fc0 fc1 fc2”.

Then, your experiment will start running jobs belonging to those members only. If the experiment was previously running and autosubmit was stopped when some jobs belonging to other members (not the ones from your input) where running, those jobs will be tracked and finished in the new exclusive run.

Furthermore, if you wish to run a sequence of only members execution; then, instead of running autosubmit run -rom “member_1” … autosubmit run -rom “member_n”, you can make a bash file with that sequence and run the bash file. Example:

Add your key to ssh agent (if encrypted)
ssh-add ~/.ssh/id_rsa
autosubmit run EXPID -rom MEMBER_1
autosubmit run EXPID -rom MEMBER_2
autosubmit run EXPID -rom MEMBER_3
...
autosubmit run EXPID -rom MEMBER_N

How to start an experiment at a given time

To start an experiment at a given time, use the command:

Add your key to ssh agent (if encrypted)
ssh-add ~/.ssh/id_rsa
autosubmit run EXPID -st INPUT

EXPID is the experiment identifier

	INPUT is the time when your experiment will start. You can provide two formats:
	
	H:M:S: For example 15:30:00 will start your experiment at 15:30 in the afternoon of the present day.

	yyyy-mm-dd H:M:S: For example 2021-02-15 15:30:00 will start your experiment at 15:30 in the afternoon on February 15th.

Then, your terminal will show a countdown for your experiment start.

This functionality can be used together with other options supplied by the run command.

The -st command has a long version –start_time.

How to start an experiment after another experiment is finished

To start an experiment after another experiment is finished, use the command:

Add your key to ssh agent (if encrypted)
ssh-add ~/.ssh/id_rsa
autosubmit run EXPID -sa EXPIDB

EXPID is the experiment identifier, the experiment you want to start.

EXPIDB is the experiment identifier of the experiment you are waiting for before your experiment starts.

Warning

Both experiments must be using Autosubmit version 3.13.0 or later.

Then, your terminal will show the current status of the experiment you are waiting for. The status format is COMPLETED/QUEUING/RUNNING/SUSPENDED/FAILED.

This functionality can be used together with other options supplied by the run command.

The -sa command has a long version –start_after.

How to profile Autosubmit while running an experiment

Autosubmit offers the possibility to profile an experiment execution. To enable the profiler, just
add the --profile (or -p) flag to your autosubmit run command, as in the following example:

autosubmit run --profile EXPID

Note

Remember that the purpose of this profiler is to measure the performance of Autosubmit,
not the jobs it runs.

This profiler uses Python’s cProfile and psutil modules to generate a report with simple CPU and
memory metrics which will be displayed in your console after the command finishes, as in the example below:

[image: Screenshot of the header of the profiler's output]

The profiler output is also saved in <EXPID>/tmp/profile. There you will find two files, the
report in plain text format and a .prof binary which contains the CPU metrics. We highly recommend
using SnakeViz [https://jiffyclub.github.io/snakeviz/] to visualize this file, as follows:

[image: The .prof file represented by the graphical library SnakeViz]

For more detailed documentation about the profiler, please visit this page.

How to prepare an experiment to run in two independent job_list. (Priority jobs, Two-step-run) (OLD METHOD)

This feature allows to run an experiment in two separated steps without the need of do anything manually.

To achieve this, you will have to use an special parameter called TWO_STEP_START in which you will put the list of the jobs that you want to run in an exclusive mode. These jobs will run until all of them finishes and once it finishes, the rest of the jobs will begun the execution.

It can be activated through TWO_STEP_START and it is set on expdef_a02n.yml, under the experiment: section.

experiment:
 DATELIST: 20120101 20120201
 MEMBERS: fc00[0-3]
 CHUNKSIZEUNIT: day
 CHUNKSIZE: 1
 NUMCHUNKS: 10
 CHUNKINI :
 CALENDAR: standard
 # To run before the rest of experiment:
 TWO_STEP_START: <job_names§ion,dates,member_or_chunk(M/C),chunk_or_member(C/M)>

In order to be easier to use, there are Three modes for use this feature: job_names and section,dates,member_or_chunk(M/C),chunk_or_member(C/M).

	By using job_names alone, you will need to put all jobs names one by one divided by the char , .

	By using section,dates,member_or_chunk(M/C),chunk_or_member(C/M). You will be able to select multiple jobs at once combining these filters.

	Use both options, job_names and section,dates,member_or_chunk(M/C),chunk_or_member(C/M). You will have to put & between the two modes.

There are 5 fields on TWO_STEP_START, all of them are optional but there are certain limitations:

	Job_name: [Independent] List of job names, separated by ‘,’ char. Optional, doesn’t depend on any field. Separated from the rest of fields by ‘&’ must be the first field if specified

	Section: [Independent] List of sections, separated by ‘,’ char. Optional, can be used alone. Separated from the rest of fields by ‘;’

	Dates: [Depends on section] List of dates, separated by ‘,’ char. Optional, but depends on Section field. Separated from the rest of fields by ‘;’

	member_or_chunk: [Depends on Dates(OR)] List of chunk or member, must start with C or M to indicate the filter type. Jobs are selected by [1,2,3..] or by a range [0-9] Optional, but depends on Dates field. Separated from the rest of fields by ‘;’

	chunk_or_member: [Depends on Dates(OR)] List of member or chunk, must start with M or C to indicate the filter type. Jobs are selected by [1,2,3..] or by a range [0-9] Optional, but depends on Dates field. Separated from the rest of fields by ‘;’

Example using the old method

Guess the expdef configuration as follow:

experiment:
 DATELIST: 20120101
 MEMBERS: 00[0-1]
 CHUNKSIZEUNIT: day
 CHUNKSIZE: 1
 NUMCHUNKS: 2
 TWO_STEP_START: a02n_20120101_000_1_REDUCE&COMPILE_DA,SIM;20120101;c[1]

Given this job_list (jobs_conf has REMOTE_COMPILE(once),DA,SIM,REDUCE)

[‘a02n_REMOTE_COMPILE’, ‘a02n_20120101_000_1_SIM’, ‘a02n_20120101_000_2_SIM’, ‘a02n_20120101_001_1_SIM’, ‘a02n_20120101_001_2_SIM’, ‘a02n_COMPILE_DA’, ‘a02n_20120101_1_DA’, ‘a02n_20120101_2_DA’, ‘a02n_20120101_000_1_REDUCE’, ‘a02n_20120101_000_2_REDUCE’, ‘a02n_20120101_001_1_REDUCE’, ‘a02n_20120101_001_2_REDUCE’]

The priority jobs will be (check TWO_STEP_START from expdef conf):

[‘a02n_20120101_000_1_SIM’, ‘a02n_20120101_001_1_SIM’, ‘a02n_COMPILE_DA’, ‘a02n_20120101_000_1_REDUCE’]

How to prepare an experiment to run in two independent job_list. (New method)

From AS4, TWO_STEP_START is not longer needed since the users can now specify exactly which tasks of a job are needed to run the current task in the DEPENDENCIES parameter.

Simplified example using the new method

This example is based on the previous one, but using the new method and without the reduce job.

experiment:
 DATELIST: 20120101
 MEMBERS: "00[0-1]"
 CHUNKSIZEUNIT: day
 CHUNKSIZE: 1
 NUMCHUNKS: 2
JOBS:
 REMOTE_COMPILE:
 FILE: remote_compile.sh
 RUNNING: once
 DA:
 FILE: da.sh
 DEPENDENCIES:
 SIM:
 DA:
 DATES_FROM:
 "20120201":
 CHUNKS_FROM:
 1:
 DATES_TO: "20120101"
 CHUNKS_TO: "1"
 SIM:
 FILE: sim.sh
 DEPENDENCIES:
 LOCAL_SEND_STATIC:
 REMOTE_COMPILE:
 SIM-1:
 DA-1:

Example 2: Crossdate wrappers using the the new dependencies

experiment:
 DATELIST: 20120101 20120201
 MEMBERS: "000 001"
 CHUNKSIZEUNIT: day
 CHUNKSIZE: '1'
 NUMCHUNKS: '3'
wrappers:
 wrapper_simda:
 TYPE: "horizontal-vertical"
 JOBS_IN_WRAPPER: "SIM DA"

JOBS:
 LOCAL_SETUP:
 FILE: templates/local_setup.sh
 PLATFORM: marenostrum_archive
 RUNNING: once
 NOTIFY_ON: COMPLETED
 LOCAL_SEND_SOURCE:
 FILE: templates/01_local_send_source.sh
 PLATFORM: marenostrum_archive
 DEPENDENCIES: LOCAL_SETUP
 RUNNING: once
 NOTIFY_ON: FAILED
 LOCAL_SEND_STATIC:
 FILE: templates/01b_local_send_static.sh
 PLATFORM: marenostrum_archive
 DEPENDENCIES: LOCAL_SETUP
 RUNNING: once
 NOTIFY_ON: FAILED
 REMOTE_COMPILE:
 FILE: templates/02_compile.sh
 DEPENDENCIES: LOCAL_SEND_SOURCE
 RUNNING: once
 PROCESSORS: '4'
 WALLCLOCK: 00:50
 NOTIFY_ON: COMPLETED
 SIM:
 FILE: templates/05b_sim.sh
 DEPENDENCIES:
 LOCAL_SEND_STATIC:
 REMOTE_COMPILE:
 SIM-1:
 DA-1:
 RUNNING: chunk
 PROCESSORS: '68'
 WALLCLOCK: 00:12
 NOTIFY_ON: FAILED
 LOCAL_SEND_INITIAL_DA:
 FILE: templates/00b_local_send_initial_DA.sh
 PLATFORM: marenostrum_archive
 DEPENDENCIES: LOCAL_SETUP LOCAL_SEND_INITIAL_DA-1
 RUNNING: chunk
 SYNCHRONIZE: member
 DELAY: '0'
 COMPILE_DA:
 FILE: templates/02b_compile_da.sh
 DEPENDENCIES: LOCAL_SEND_SOURCE
 RUNNING: once
 WALLCLOCK: 00:20
 NOTIFY_ON: FAILED
 DA:
 FILE: templates/05c_da.sh
 DEPENDENCIES:
 SIM:
 LOCAL_SEND_INITIAL_DA:
 CHUNKS_TO: "all"
 DATES_TO: "all"
 MEMBERS_TO: "all"
 COMPILE_DA:
 DA:
 DATES_FROM:
 "20120201":
 CHUNKS_FROM:
 1:
 DATES_TO: "20120101"
 CHUNKS_TO: "1"
 RUNNING: chunk
 SYNCHRONIZE: member
 DELAY: '0'
 WALLCLOCK: 00:12
 PROCESSORS: '256'
 NOTIFY_ON: FAILED

[image: crossdate-example]

Finally, you can launch Autosubmit run in background and with nohup (continue running although the user who launched the process logs out).

Add your key to ssh agent (if encrypted)
ssh-add ~/.ssh/id_rsa
nohup autosubmit run cxxx &

How to stop the experiment

You can stop Autosubmit by sending a signal to the process.
To get the process identifier (PID) you can use the ps command on a shell interpreter/terminal.

ps -ef | grep autosubmit
dbeltran 22835 1 1 May04 ? 00:45:35 autosubmit run cxxy
dbeltran 25783 1 1 May04 ? 00:42:25 autosubmit run cxxx

To send a signal to a process you can use kill also on a terminal.

To stop immediately experiment cxxx:

kill -9 22835

Important

In case you want to restart the experiment, you must follow the
How to restart the experiment procedure, explained below, in order to properly resynchronize all completed jobs.

How to restart the experiment

This procedure allows you to restart an experiment. Autosubmit looks for the COMPLETED file for jobs that are considered active (SUBMITTED, QUEUING, RUNNING), UNKNOWN or READY.

Warning

You can only restart the experiment if there are not active jobs. You can use -f flag to cancel running jobs automatically.

You must execute:

autosubmit recovery EXPID

EXPID is the experiment identifier.

Options:

usage: autosubmit recovery [-h] [-np] [--all] [-s] [-group_by {date,member,chunk,split} -expand -expand_status] expid

 expid experiment identifier

 -h, --help show this help message and exit
 -np, --noplot omit plot
 -f Allows to perform the recovery even if there are active jobs
 --all Get all completed files to synchronize pkl
 -s, --save Save changes to disk
 -group_by {date,member,chunk,split,automatic}
 criteria to use for grouping jobs
 -expand, list of dates/members/chunks to expand
 -expand_status, status(es) to expand
 -nt --notransitive
 prevents doing the transitive reduction when plotting the workflow
 -nl --no_recover_logs
 prevents the recovering of log files from remote platforms
 -d --detail
 Shows Job List view in terminal

Example:

autosubmit recovery cxxx -s

In order to understand more the grouping options, which are used for visualization purposes, please check Grouping jobs.

Hint

When we are satisfied with the results we can use the parameter -s, which will save the change to the pkl file and rename the update file.

The –all flag is used to synchronize all jobs of our experiment locally with the information available on the remote platform
(i.e.: download the COMPLETED files we may not have). In case new files are found, the pkl will be updated.

Example:

autosubmit recovery cxxx --all -s

How to rerun a part of the experiment

This procedure allows you to create automatically a new pickle with a list of jobs of the experiment to rerun.

Using the expdef_<expid>.yml the create command will generate the rerun if the variable RERUN is set to TRUE and a RERUN_JOBLIST is provided.

Additionally, you can have re-run only jobs that won’t be include in the default job_list. In order to do that, you have to set RERUN_ONLY in the jobs conf of the corresponding job.

autosubmit create cxxx

It will read the list of jobs specified in the RERUN_JOBLIST and will generate a new plot.

Example:

vi <experiments_directory>/cxxx/conf/expdef_cxxx.yml

...

rerun:
 RERUN: TRUE
 RERUN_JOBLIST: RERUN_TEST_INI;SIM[19600101[C:3]],RERUN_TEST_INI_chunks[19600101[C:3]]
...

vi <experiments_directory>/cxxx/conf/jobs_cxxx.yml

PREPROCVAR:
 FILE: templates/04_preproc_var.sh
 RUNNING: chunk
 PROCESSORS: 8

RERUN_TEST_INI_chunks:
 FILE: templates/05b_sim.sh
 RUNNING: chunk
 RERUN_ONLY: true

RERUN_TEST_INI:
 FILE: templates/05b_sim.sh
 RUNNING: once
 RERUN_ONLY: true

SIM:
 DEPENDENCIES: RERUN_TEST_INI RERUN_TEST_INI_chunks PREPROCVAR SIM-1
 RUNNING: chunk
 PROCESSORS: 10

.. figure:: fig/rerun.png
 :name: rerun_result
 :align: center
 :alt: rerun_result

Run the command:

Add your key to ssh agent (if encrypted)
ssh-add ~/.ssh/id_rsa
nohup autosubmit run cxxx &

Manage Experiments

How to clean the experiment

This procedure allows you to save space after finalising an experiment.
You must execute:

autosubmit clean EXPID

Options:

usage: autosubmit clean [-h] [-pr] [-p] [-s] expid

 expid experiment identifier

 -h, --help show this help message and exit
 -pr, --project clean project
 -p, --plot clean plot, only 2 last will remain
 -s, --stats clean stats, only last will remain

	The -p and -s flag are used to clean our experiment plot folder to save disk space. Only the two latest plots will be kept. Older plots will be removed.

Example:

autosubmit clean cxxx -p

	The -pr flag is used to clean our experiment proj locally in order to save space (it could be particularly big).

Caution

Bear in mind that if you have not synchronized your experiment project folder with the information available on the remote repository (i.e.: commit and push any changes we may have), or in case new files are found, the clean procedure will be failing although you specify the -pr option.

Example:

autosubmit clean cxxx -pr

A bare copy (which occupies less space on disk) will be automatically made.

Hint

That bare clone can be always reconverted in a working clone if we want to run again the experiment by using git clone bare_clone original_clone.

Note

In addition, every time you run this command with -pr option, it will check the commit unique identifier for local working tree existing on the proj directory.
In case that commit identifier exists, clean will register it to the expdef_cxxx.yml file.

How to archive an experiment

When you archive an experiment in Autosubmit, it automatically cleans
the experiment as well. This means the experiment will not be available for
use, unless it is unarchived.

autosubmit archive <EXPID>

Options:

1 autosubmit archive options

$ autosubmit archive -h

[Errno 2] No such file or directory: 'source/'

The archived experiment will be stored as a tar.gz` file, under
a directory named after the year of the last ``_COMPLETED file
date or, if no _COMPLETED job is present, it will use the year of
the date the autosubmit archive was run (e.g. for the selected
year 2023, the location will be $HOME/autosubmit/2023/<EXPID>.tar.gz).

How to unarchive an experiment

To unarchive an experiment, use the command:

autosubmit unarchive <EXPID>

Options:

2 autosubmit unarchive options

$ autosubmit unarchive -h

[Errno 2] No such file or directory: 'source/'

How to delete the experiment

To delete the experiment, use the command:

autosubmit delete EXPID

EXPID is the experiment identifier.

Warning

DO NOT USE THIS COMMAND IF YOU ARE NOT SURE !
It deletes the experiment from database and experiment’s folder.

Options:

usage: autosubmit delete [-h] [-f] expid

 expid experiment identifier

 -h, --help show this help message and exit
 -f, --force deletes experiment without confirmation

Example:

autosubmit delete cxxx

Warning

Be careful ! force option does not ask for your confirmation.

How to migrate an experiment

To migrate an experiment from one user to another, you need to add two parameters for each platform in the platforms configuration file:

	USER_TO: <target_user> # Mandatory

	TEMP_DIR: <hpc_temporary_directory> # Mandatory, can be left empty if there are no files on that platform

	SAME_USER: false|true # Default False

	PROJECT_TO: <project> # Optional, if not specified project will remain the same

	HOST_TO: <cluster_ip> # Optional, avoid alias if possible, try use direct ip.

Warning

The USER_TO must be a different user , in case you want to maintain the same user, put SAME_USER: True.

Warning

The temporary directory must be readable by both users (old owner and new owner)
Example for a RES account to BSC account the tmp folder must have rwx|rwx|— permissions.
The temporary directory must be in the same filesystem.

User A, To offer the experiment:

autosubmit migrate --offer expid

Local files will be archived and remote files put in the HPC temporary directory.

User A To only offer the remote files

autosubmit migrate expid --offer --onlyremote

Only remote files will be put in the HPC temporary directory.

Warning

Be sure that there is no folder named as the expid before do the pick.
The old owner might need to remove temporal files and archive.
To Run the experiment the queue may need to be change.

Warning

If onlyremote option is selected, the pickup must maintain the flag otherwise the command will fail.

Now to pick the experiment, the user B, must do

autosubmit migrate --pickup expid

Local files will be unarchived and remote files copied from the temporal location.

To only pick the remote files, the user B, must do

autosubmit migrate --pickup expid --onlyremote

How to refresh the experiment project

To refresh the project directory of the experiment, use the command:

autosubmit refresh EXPID

EXPID is the experiment identifier.

It checks experiment configuration and copy code from original repository to project directory.

Warning

DO NOT USE THIS COMMAND IF YOU ARE NOT SURE !
Project directory (<expid>/proj will be overwritten and you may loose local changes.

Options:

usage: autosubmit refresh [-h] expid

 expid experiment identifier

 -h, --help show this help message and exit
 -mc, --model_conf overwrite model conf file
 -jc, --jobs_conf overwrite jobs conf file

Example:

autosubmit refresh cxxx

How to update the description of your experiment

Use the command:

autosubmit updatedescrip EXPID DESCRIPTION

EXPID is the experiment identifier.

DESCRIPTION is the new description of your experiment.

Autosubmit will validate the provided data and print the results in the command line.

Example:

autosubmit a29z "Updated using Autosubmit updatedescrip"

How to change the job status

This procedure allows you to modify the status of your jobs.

Warning

Beware that Autosubmit must be stopped to use setstatus.
Otherwise a running instance of Autosubmit, at some point, will overwrite any change you may have done.

You must execute:

autosubmit setstatus EXPID -fs STATUS_ORIGINAL -t STATUS_FINAL -s

EXPID is the experiment identifier.
STATUS_ORIGINAL is the original status to filter by the list of jobs.
STATUS_FINAL the desired target status.

Options:

usage: autosubmit setstatus [-h] [-np] [-s] [-t] [-o {pdf,png,ps,svg}] [-fl] [-fc] [-fs] [-ft] [-group_by {date,member,chunk,split} -expand -expand_status] [-cw] expid

 expid experiment identifier

 -h, --help show this help message and exit
 -o {pdf,png,ps,svg}, --output {pdf,png,ps,svg}
 type of output for generated plot
 -np, --noplot omit plot
 -s, --save Save changes to disk
 -t, --status_final Target status
 -fl FILTER_LIST, --list
 List of job names to be changed
 -fc FILTER_CHUNK, --filter_chunk
 List of chunks to be changed
 -fs FILTER_STATUS, --filter_status
 List of status to be changed
 -ft FILTER_TYPE, --filter_type
 List of types to be changed
 -ftc FILTER_TYPE_CHUNK --filter_type_chunk
 Accepts a string with the formula: "[19601101 [fc0 [1 2 3 4] Any [1]] 19651101 [fc0 [16 30]]],SIM,SIM2"
 Where SIM, SIM2 are section (job types) names that also accept the keyword "Any" so the changes apply to all sections.
 Starting Date (19601101) does not accept the keyword "Any", so you must specify the starting dates to be changed.
 You can also specify date ranges to apply the change to a range on dates.
 Member names (fc0) accept the keyword "Any", so the chunks ([1 2 3 4]) given will be updated for all members.
 Chunks must be in the format "[1 2 3 4]" where "1 2 3 4" represent the numbers of the chunks in the member,
 no range format is allowed.
 -d When using the option -ftc and sending this flag, a tree view of the experiment with markers indicating which jobs
 have been changed will be generated.
 --hide, hide the plot
 -group_by {date,member,chunk,split,automatic}
 criteria to use for grouping jobs
 -expand, list of dates/members/chunks to expand
 -expand_status, status(es) to expand
 -nt --notransitive
 prevents doing the transitive reduction when plotting the workflow
 -cw --check_wrapper
 Generate the wrapper in the current workflow

Examples:

autosubmit setstatus cxxx -fl "cxxx_20101101_fc3_21_sim cxxx_20111101_fc4_26_sim" -t READY -s
autosubmit setstatus cxxx -fc "[19601101 [fc1 [1]]]" -t READY -s
autosubmit setstatus cxxx -fs FAILED -t READY -s
autosubmit setstatus cxxx -ft TRANSFER -t SUSPENDED -s
autosubmit setstatus cxxx -ftc "[19601101 [fc1 [1]]], SIM" -t SUSPENDED -s

Date (month) range example:

autosubmit setstatus cxxx -ftc "[1960(1101-1201) [fc1 [1]]], SIM" -t SUSPENDED -s

This example will result changing the following jobs:

cxxx_19601101_fc1_1_SIM
cxxx_19601201_fc1_1_SIM

Date (day) range example:

autosubmit setstatus cxxx -ftc "[1960(1101-1105) [fc1 [1]]], SIM" -t SUSPENDED -s

Result:

cxxx_19601101_fc1_1_SIM
cxxx_19601102_fc1_1_SIM
cxxx_19601103_fc1_1_SIM
cxxx_19601104_fc1_1_SIM
cxxx_19601105_fc1_1_SIM

This script has two mandatory arguments.

The -t where you must specify the target status of the jobs you want to change to:

{READY,COMPLETED,WAITING,SUSPENDED,FAILED,UNKNOWN}

The second argument has four alternatives, the -fl, -fc, -fs and -ft; with those we can apply a filter for the jobs we want to change:

	
	The -fl variable receives a list of job names separated by blank spaces: e.g.:
	"cxxx_20101101_fc3_21_sim cxxx_20111101_fc4_26_sim"

If we supply the key word “Any”, all jobs will be changed to the target status.

	
	The variable -fc should be a list of individual chunks or ranges of chunks in the following format:
	[19601101 [fc0 [1 2 3 4] fc1 [1]] 19651101 [fc0 [16-30]]]

	
	The variable -fs can be the following status for job:
	{Any,READY,COMPLETED,WAITING,SUSPENDED,FAILED,UNKNOWN}

	The variable -ft can be one of the defined types of job.

The variable -ftc acts similar to -fc but also accepts the job types. It does not accept chunk ranges e.g. “1-10”, but accepts the wildcard “Any” for members and job types. Let’s look at some examples.

	
	Using -ftc to change the chunks “1 2 3 4” of member “fc0” and chunk “1” of member “fc1” for the starting date “19601101”, where these changes apply only for the “SIM” jobs:
	[19601101 [fc0 [1 2 3 4] fc1 [1]]],SIM

	
	Using -ftc to change the chunks “1 2 3 4” of all members for the starting date “19601101”, where these changes apply only for the “SIM” jobs:
	[19601101 [Any [1 2 3 4]]],SIM

	
	Using -ftc to change the chunks “1 2 3 4” of “fc0” members for the starting date “19601101”, where these changes apply to all jobs:
	[19601101 [fc0 [1 2 3 4]]],Any

Try the combinations you come up with. Autosubmit will supply with proper feedback when a wrong combination is supplied.

Hint

When we are satisfied with the results we can use the parameter -s, which will save the change to the pkl file. In order to understand more the grouping options, which are used for visualization purposes, please check Grouping jobs.

How to change the job status without stopping autosubmit

This procedure allows you to modify the status of your jobs without having to stop Autosubmit.

You must create a file in <experiments_directory>/<expid>/pkl/ named:

updated_list_<expid>.txt

Format:

This file should have two columns: the first one has to be the job_name and the second one the status.

Options:

READY,COMPLETED,WAITING,SUSPENDED,FAILED,UNKNOWN

Example:

vi updated_list_cxxx.txt

cxxx_20101101_fc3_21_sim READY
cxxx_20111101_fc4_26_sim READY

If Autosubmit finds the above file, it will process it. You can check that the processing was OK at a given date and time,
if you see that the file name has changed to:

update_list_<expid>_<date>_<time>.txt

Note

A running instance of Autosubmit will check the existence of adobe file after checking already submitted jobs.
It may take some time, depending on the setting SAFETYSLEEPTIME.

Warning

Keep in mind that autosubmit reads the file automatically so it is suggested to create the file in another location like /tmp or /var/tmp and then copy/move it to the pkl folder. Alternatively you can create the file with a different name an rename it when you have finished.

Monitor and Check Experiments

How to check the experiment configuration

To check the configuration of the experiment, use the command:

autosubmit check EXPID

EXPID is the experiment identifier.

It checks experiment configuration and warns about any detected error or inconsistency.
It is used to check if the script is well-formed.
If any template has an inconsistency it will replace them for an empty value on the cmd generated.
Options:

usage: autosubmit check [-h -nt] expid

 expid experiment identifier
 -nt --notransitive
 prevents doing the transitive reduction when plotting the workflow
 -h, --help show this help message and exit

Example:

autosubmit check cxxx

How to use check in running time:

In jobs_cxxx.yml , you can set check(default true) to check the scripts during autosubmit run cxx.

There are two parameters related to check:

	CHECK: Controls the mechanism that allows replacing an unused variable with an empty string (%_% substitution). It is TRUE by default.

	SHOW_CHECK_WARNINGS: For debugging purposes. It will print a lot of information regarding variables and substitution if it is set to TRUE.

CHECK: TRUE or FALSE or ON_SUBMISSION # Default is TRUE
SHOW_CHECK_WARNINGS: TRUE or FALSE # Default is FALSE

CHECK: TRUE # Static templates (existing on `autosubmit create`). Used to substitute empty variables

CHECK: ON_SUBMISSION # Dynamic templates (generated on running time). Used to substitute empty variables.

CHECK: FALSE # Used to disable this substitution.

SHOW_CHECK_WARNINGS: TRUE # Shows a LOT of information. Disabled by default.

For example:

LOCAL_SETUP:
 FILE: filepath_that_exists
 PLATFORM: LOCAL
 WALLCLOCK: 05:00
 CHECK: TRUE
 SHOW_CHECK_WARNINGS: TRUE
 ...
SIM:
 FILE: filepath_that_no_exists_until_setup_is_processed
 PLATFORM: bsc_es
 DEPENDENCIES: LOCAL_SETUP SIM-1
 RUNNING: chunk
 WALLCLOCK: 05:00
 CHECK: ON_SUBMISSION
 SHOW_CHECK_WARNINGS: FALSE
 ...

How to generate cmd files

To generate the cmd files of the current non-active jobs experiment, it is possible to use the command:

autosubmit inspect EXPID

EXPID is the experiment identifier.

Usage

Options:

usage: autosubmit inspect [-h] [-fl] [-fc] [-fs] [-ft] [-cw] expid

 expid experiment identifier

 -h, --help show this help message and exit

 -fl FILTER_LIST, --list
 List of job names to be generated
 -fc FILTER_CHUNK, --filter_chunk
 List of chunks to be generated
 -fs FILTER_STATUS, --filter_status
 List of status to be generated
 -ft FILTER_TYPE, --filter_type
 List of types to be generated

 -cw --checkwrapper
 Generate the wrapper cmd with the current filtered jobs

 -f --force
 Generate all cmd files

Example

with autosubmit.lock present or not:

autosubmit inspect expid

with autosubmit.lock present or not:

autosubmit inspect expid -f

without autosubmit.lock:

autosubmit inspect expid -fl [-fc,-fs or ft]

To generate cmd for wrappers:

autosubmit inspect expid -cw -f

With autosubmit.lock and no (-f) force, it will only generate all files that are not submitted.

Without autosubmit.lock, it will generate all unless filtered by -fl,fc,fs or ft.

To generate cmd only for a single job of the section :

autosubmit inspect expid -q

How to monitor an experiment

To monitor the status of the experiment, use the command:

autosubmit monitor EXPID

EXPID is the experiment identifier.

Options:

usage: autosubmit monitor [-h] [-o {pdf,png,ps,svg,txt}] [-group_by {date,member,chunk,split} -expand -expand_status] [-fl] [-fc] [-fs] [-ft] [-cw] expid [-txt] [-txtlog]

 expid Experiment identifier.

 -h, --help Show this help message and exit.
 -o {pdf,png,ps,svg}, --output {pdf,png,ps,svg,txt}
 Type of output for generated plot (or text file).
 -group_by {date,member,chunk,split,automatic}
 Criteria to use for grouping jobs.
 -expand, List of dates/members/chunks to expand.
 -expand_status, Status(es) to expand.
 -fl FILTER_LIST, --list
 List of job names to be filtered.
 -fc FILTER_CHUNK, --filter_chunk
 List of chunks to be filtered.
 -fs FILTER_STATUS, --filter_status
 Status to be filtered.
 -ft FILTER_TYPE, --filter_type
 Type to be filtered.
 --hide, Hide the plot.
 -txt, --text
 Generates a tree view format that includes job name, children number, and status in a file in the /status/ folder. If possible, shows the results in the terminal.
 -txtlog, --txt_logfiles
 Generates a list of job names, status, .out path, and .err path as a file in /status/ (AS <3.12 behaviour).
 -nt --notransitive
 Prevents doing the transitive reduction when plotting the workflow.
 -cw --check_wrapper
 Generate the wrapper in the current workflow.

Example:

autosubmit monitor cxxx

The location where the user can find the generated plots with date and timestamp can be found below:

<experiments_directory>/cxxx/plot/cxxx_<date>_<time>.pdf

The location where the user can find the txt output containing the status of each job and the path to out and err log files.

<experiments_directory>/cxxx/status/cxxx_<date>_<time>.txt

Hint

Very large plots may be a problem for some pdf and image viewers.
If you are having trouble with your usual monitoring tool, try using svg output and opening it with Google Chrome with the SVG Navigator extension installed.

In order to understand more the grouping options, please check Grouping jobs.

Grouping jobs

Other than the filters, another option for large workflows is to group jobs. This option is available with the group_by keyword, which can receive the values {date,member,chunk,split,automatic}.

For the first 4 options, the grouping criteria is explicitly defined {date,member,chunk,split}.
In addition to that, it is possible to expand some dates/members/chunks that would be grouped either/both by status or/and by specifying the date/member/chunk not to group.
The syntax used in this option is almost the same as for the filters, in the format of [date1 [member1 [chunk1 chunk2] member2 [chunk3 ...] ...] date2 [member3 [chunk1]] ...]

Important

The grouping option is also in autosubmit monitor, create, setstatus and recovery

Examples:

Consider the following workflow:

[image: simple workflow]

Group by date

-group_by=date

[image: group date]

-group_by=date -expand="[20000101]"

[image: group date expand]

-group_by=date -expand_status="FAILED RUNNING"

[image: group date expand status]

-group_by=date -expand="[20000101]" -expand_status="FAILED RUNNING"

[image: group date expand status]

Group by member

-group_by=member

[image: group member]

-group_by=member -expand="[20000101 [fc0 fc1] 20000202 [fc0]]"

[image: group member expand]

-group_by=member -expand_status="FAILED QUEUING"

[image: group member expand]

-group_by=member -expand="[20000101 [fc0 fc1] 20000202 [fc0]]" -expand_status="FAILED QUEUING"

[image: group member expand]

Group by chunk

-group_by=chunk

TODO: Add group_chunk.png figure.

Synchronize jobs

If there are jobs synchronized between members or dates, then a connection between groups is shown:

[image: group synchronize]

-group_by=chunk -expand="[20000101 [fc0 [1 2]] 20000202 [fc1 [2]]]"

[image: group chunk expand]

-group_by=chunk -expand_status="FAILED RUNNING"

[image: group chunk expand]

-group_by=chunk -expand="[20000101 [fc0 [1]] 20000202 [fc1 [1 2]]]" -expand_status="FAILED RUNNING"

[image: group chunk expand]

Group by split

If there are chunk jobs that are split, the splits can also be grouped.

[image: split workflow]

-group_by=split

[image: group split]

Understanding the group status

If there are jobs with different status grouped together, the status of the group is determined as follows:
If there is at least one job that failed, the status of the group will be FAILED. If there are no failures, but if there is at least one job running, the status will be RUNNING.
The same idea applies following the hierarchy: SUBMITTED, QUEUING, READY, WAITING, SUSPENDED, UNKNOWN. If the group status is COMPLETED, it means that all jobs in the group were completed.

Automatic grouping

For the automatic grouping, the groups are created by collapsing the split->chunk->member->date that share the same status (following this hierarchy).
The following workflow automatic created the groups 20000101_fc0, since all the jobs for this date and member were completed, 20000101_fc1_3, 20000202_fc0_2, 20000202_fc0_3 and 20000202_fc1, as all the jobs up to the respective group granularity share the same - waiting - status.

For example:

[image: group automatic]

Especially in the case of monitoring an experiment with a very large number of chunks, it might be useful to hide the groups created automatically. This allows to better visualize the chunks in which there are jobs with different status, which can be a good indication that there is something currently happening within such chunks (jobs ready, submitted, running, queueing or failed).

-group_by=automatic --hide_groups

How to profile Autosubmit while monitoring an experiment

Autosubmit offers the possibility to profile the execution of the monitoring process. To enable the
profiler, just add the --profile (or -p) flag to your autosubmit monitor command, as in
the following example:

autosubmit monitor --profile EXPID

Note

Remember that the purpose of this profiler is to measure the performance of Autosubmit,
not the jobs it runs.

This profiler uses Python’s cProfile and psutil modules to generate a report with simple CPU and
memory metrics which will be displayed in your console after the command finishes, as in the example below:

[image: Screenshot of the header of the profiler's output]

The profiler output is also saved in <EXPID>/tmp/profile. There you will find two files, the
report in plain text format and a .prof binary which contains the CPU metrics. We highly recommend
using SnakeViz [https://jiffyclub.github.io/snakeviz/] to visualize this file, as follows:

[image: The .prof file represented by the graphical library SnakeViz]

For more detailed documentation about the profiler, please visit this page.

How to get details about the experiment

To get details about the experiment, use the command:

autosubmit describe {EXPID} {-u USERNAME}

EXPID is the experiment identifier, can be a list of expid separated by comma or spaces
-u USERNAME is the username of the user who submitted the experiment.

It displays information about the experiment. Currently it describes owner,description_date,model,branch and hpc

Options:

usage: autosubmit describe [-h] expid

 expid experiment identifier
 -u USERNAME, --user USERNAME username of the user who submitted the experiment
 -h, --help show this help message and exit

Examples:

.. code-block:: bash

autosubmit describe cxxx
autosubmit describe “cxxx cyyy”
autosubmit describe cxxx,cyyy
autosubmit describe -u dbeltran

How to monitor job statistics

The following command could be adopted to generate the plots for visualizing the jobs statistics of the experiment at any instance:

autosubmit stats EXPID

EXPID is the experiment identifier.

Options:

usage: autosubmit stats [-h] [-ft] [-fp] [-o {pdf,png,ps,svg}] expid

 expid experiment identifier

 -h, --help show this help message and exit
 -ft FILTER_TYPE, --filter_type FILTER_TYPE
 Select the job type to filter the list of jobs
 -fp FILTER_PERIOD, --filter_period FILTER_PERIOD
 Select the period of time to filter the jobs
 from current time to the past in number of hours back
 -o {pdf,png,ps,svg}, --output {pdf,png,ps,svg}
 type of output for generated plot
 --hide, hide the plot
 -nt --notransitive
 prevents doing the transitive reduction when plotting the workflow

Example:

autosubmit stats cxxx

The location where user can find the generated plots with date and timestamp can be found below:

<experiments_directory>/cxxx/plot/cxxx_statistics_<date>_<time>.pdf

Console output description

Example:

Period: 2021-04-25 06:43:00 ~ 2021-05-07 18:43:00
Submitted (#): 37
Run (#): 37
Failed (#): 3
Completed (#): 34
Queueing time (h): 1.61
Expected consumption real (h): 2.75
Expected consumption CPU time (h): 3.33
Consumption real (h): 0.05
Consumption CPU time (h): 0.06
Consumption (%): 1.75

Where:

	Period: Requested time frame.

	Submitted: Total number of attempts that reached the SUBMITTED status.

	Run: Total number of attempts that reached the RUNNING status.

	Failed: Total number of FAILED attempts of running a job.

	Completed: Total number of attempts that reached the COMPLETED status.

	Queueing time (h): Sum of the time spent queuing by attempts that reached the COMPLETED status, in hours.

	Expected consumption real (h): Sum of wallclock values for all jobs, in hours.

	Expected consumption CPU time (h): Sum of the products of wallclock value and number of requested processors for each job, in hours.

	Consumption real (h): Sum of the time spent running by all attempts of jobs, in hours.

	Consumption CPU time (h): Sum of the products of the time spent running and number of requested processors for each job, in hours.

	Consumption (%): Percentage of Consumption CPU time relative to Expected consumption CPU time.

Diagram output description

The main stats output is a bar diagram. On this diagram, each job presents these values:

	Queued (h): Sum of time spent queuing for COMPLETED attempts, in hours.

	Run (h): Sum of time spent running for COMPLETED attempts, in hours.

	Failed jobs (#): Total number of FAILED attempts.

	Fail Queued (h): Sum of time spent queuing for FAILED attempts, in hours.

	Fail Run (h): Sum of time spent running for FAILED attempts, in hours.

	Max wallclock (h): Maximum wallclock value for all jobs in the plot.

Notice that the left scale of the diagram measures the time in hours, and the right scale measures the number of attempts.

Custom statistics

Although Autosubmit saves several statistics about your experiment, as the queueing time for each job, how many failures per job, etc.
The user also might be interested in adding his particular statistics to the Autosubmit stats report (`autosubmit stats EXPID`).
The allowed format for this feature is the same as the Autosubmit configuration files: INI style. For example:

COUPLING:
LOAD_BALANCE: 0.44
RECOMMENDED_PROCS_MODEL_A: 522
RECOMMENDED_PROCS_MODEL_B: 418

The location where user can put this stats is in the file:

<experiments_directory>/cxxx/tmp/cxxx_GENERAL_STATS

Hint

If it is not yet created, you can manually create the file: `expid_GENERAL_STATS` inside the `tmp` folder.

How to extract information about the experiment parameters

This procedure allows you to extract the experiment variables that you want.

The command can be called with:

autosubmit report EXPID -t "absolute_file_path"

Alternatively it also can be called as follows:

autosubmit report expid -all

Or combined as follows:

autosubmit report expid -all -t "absolute_file_path"

Options:

usage: autosubmit report [-all] [-t] [-fp] [-p] expid

 expid Experiment identifier

 -t, --template <path_to_template> Allows to select a set of parameters to be extracted

 -fp, --show_all_parameters All parameters will be extracted to a different file

 -fp, --folder_path By default, all parameters will be put into experiment tmp folder

 -p, --placeholders disable the replacement by - if the variable doesn't exist

Autosubmit parameters are encapsulated by %_%, once you know how the parameter is called you can create a template similar to the one as follows:

3 Template format and example.

 - **CHUNKS:** %NUMCHUNKS% - %CHUNKSIZE% %CHUNKSIZEUNIT%
 - **VERSION:** %VERSION%
 - **MODEL_RES:** %MODEL_RES%
 - **PROCS:** %XIO_NUMPROC% / %NEM_NUMPROC% / %IFS_NUMPROC% / %LPJG_NUMPROC% / %TM5_NUMPROC_X% / %TM5_NUMPROC_Y%
 - **PRODUCTION_EXP:** %PRODUCTION_EXP%
 - **OUTCLASS:** %BSC_OUTCLASS% / %CMIP6_OUTCLASS%

This will be understood by Autosubmit and the result would be similar to:

- CHUNKS: 2 - 1 month
- VERSION: trunk
- MODEL_RES: LR
- PROCS: 96 / 336 / - / - / 1 / 45
- PRODUCTION_EXP: FALSE
- OUTCLASS: reduced / -

Although it depends on the experiment.

If the parameter doesn’t exists, it will be returned as ‘-’ while if the parameter is declared but empty it will remain empty

4 List of all parameters example.

 HPCQUEUE: bsc_es
 HPCARCH: marenostrum4
 LOCAL_TEMP_DIR: /home/dbeltran/experiments/ASlogs
 NUMCHUNKS: 1
 PROJECT_ORIGIN: https://earth.bsc.es/gitlab/es/auto-ecearth3.git
 MARENOSTRUM4_HOST: mn1.bsc.es
 NORD3_QUEUE: bsc_es
 NORD3_ARCH: nord3
 CHUNKSIZEUNIT: month
 MARENOSTRUM4_LOGDIR: /gpfs/scratch/bsc32/bsc32070/a01w/LOG_a01w
 PROJECT_COMMIT:
 SCRATCH_DIR: /gpfs/scratch
 HPCPROJ: bsc32
 NORD3_BUDG: bsc32

Configuration details, setup and sharing

Experiment configuration

Since the beginning, Autosubmit has always been composed of five files in the folder $expid/conf that define the experiment configuration.

However, from Autosubmit 4, the configuration is no longer bound to one specific location. And it is composed of YAML files.

This document will teach you how to set up an experiment configuration using the different available methods and what Autosubmit expects to find in the configuration.

Standard configuration structure

The standard configuration is the one that is used by default. It is composed of five files in the folder $expid/conf that define the experiment configuration.

This configuration is generated by the expid command without any opcional flag or when using the -dm flag.

The following table summarizes what configuration files Autosubmit expects and what parameters you can define.

	File

	Content

	expdef.yml

	
	It contains the default platform, the one set with -H.

	Allows changing the start dates, members and chunks.

	Allows changing the experiment project source (git, local, svn or dummy)

	platforms.yml

	
	It contains the list of platforms to use in the experiment.

	This file must be filled-up with the platform(s) configuration(s).

	Several platforms can be defined and used in the same experiment.

	jobs.yml

	
	It contains the tasks’ definitions in sections.

	This file must be filled-up with the tasks’ definitions.

	Several sections can be defined and used in the same experiment.

	autosubmit.yml

	
	Parameters that control workflow behavior.

	Parameters that activate extra functionalities.

	proj.yml

	
	Project-dependent parameters.

	version.yml

	
	Current AS version for this experiment.

It is worth mentioning that for Autosubmit 4, these files are seen as one. Therefore, the sections and parameters can be defined in any of the files.

Note

The version.yml file is automatically generated by Autosubmit. It is not necessary to create it.

Note

Autosubmit only admits the use of the .yml and .yaml (lowercase) extensions for the configuration files.

Advanced configuration structure and restrictions

From Autosubmit4, the configuration structure can be split into multiple locations and different files.

The experiment must have a *-minimal.yml file in $expid/conf in the $expid/conf folder. This file is used to define the location of the configuration files and can be generated by the expid command when using with -min flag.
This location can be defined by the user in the DEFAULT.CONFIG_DIR parameter inside a file ending with minimal.yml or minimal.yaml file.

	You would define the model-specific parameters inside your git or local repository. So when you push/pull the changes from git, they will be updated automatically.

	You would define the experiment-specific parameters under $expid/conf.

	You would define your user-specific parameters, for example, platform user, in a different location.

How to create and share the configuration

This section contains examples of creating a standard configuration and an advanced one from a newly made experiment.

Standard Configuration

The expid command can generate a sample structure containing all the parameters that Autosubmit needs to work correctly.

#Create a new experiment.
autosubmit expid -H "LOCAL" -d "Standard configuration."
Get the expid from the output. Ex. expid=a000
cd $autosubmit_experiment_folder/a000
ls conf
autosubmit_a01y.yml expdef_a01y.yml platforms_a01y.yml
 jobs_a01y.yml proj_a01y.yml

Sharing a standard Configuration

The expid command can copy another user’s existing expid to work correctly.

#Create a new experiment.
autosubmit expid --copy a000 -H "LOCAL" -d "Standard configuration. --copy of a000"
Get the expid from the output. Ex. expid=a001
cd $autosubmit_experiment_folder/a001
ls conf
autosubmit_a001.yml expdef_a001.yml platforms_a001.yml
 jobs_a001.yml proj_a001.yml

Warning

You must share the same Autosubmit experiment database for this to work.

Advanced Configuration

Autosubmit is now able to find the configuration files in different locations. The user can define the location of the configuration files in the DEFAULT.CONFIG_DIR parameter inside a file ending with minimal.yml or minimal.yaml file.

An skeleton of the advanced configuration can be generated through the expid command when using the -min flag.

#Create a new experiment.
autosubmit expid -min -d "Test minimal conf"
Get the expid from the output. Ex. expid=a002
cd $autosubmit_experiment_folder/a002
ls conf
minimal.yml

To give a practical example, we will show an example using git. However, using a non-git folder is also possible.

Edit or generate a minimal.yml with the following parameters, leaving the rest untouched.

DEFAULT:
 #ADD, note that %PROJDIR% is an special AS_PLACEHOLDER that points to the `$expid/proj/proj_destination` folder.
 CUSTOM_CONFIG:
 PRE: "%PROJDIR%/<path_to_model_as_conf>"
 POST: <path_to_user_conf>
PROJECT:
 PROJECT_TYPE: "git"
 PROJECT_DESTINATION: "git_project"
GIT:
 PROJECT_ORIGIN: "TO_FILL"
 PROJECT_BRANCH: "TO_FILL"
 PROJECT_COMMIT: "TO_FILL"
 PROJECT_SUBMODULES: "TO_FILL"
 FETCH_SINGLE_BRANCH: True

Important

The final configuration will be loaded in the following order: PRE:$expid/%PROJDIR%/$as_proj_config_path -> $expid/conf -> POST. Overwriting the parameters in the order they are loaded.

CUSTOM_CONFIG: Syntax

The %DEFAULT.CUSTOM_CONFIG% parameter is used to define the location of the model/project or user files. The paths can be absolute or relative to the %PROJDIR%.

It has two different syntaxes:

	Simple a list of paths to the model or project yaml files. This can be a file or a folder. If it is a folder, all the files inside will be loaded in a non-recursive way.

	Advanced a dictionary with two keys: PRE and POST. The PRE key is used to define the files that will be loaded before the $EXPID/CONF ones. The POST key is used to define user configuration.

Note

With the simple syntax, the outcome is the same as the advanced one, but with the POST key empty.

Note

If a list of path is provided, the paths will be loaded in the order they are provided and in a recursive way. Meaning that in the case there are additional DEFAULT.CUSTOM_CONFIG parameter inside the files, they will be also loaded.

Download the git project
autosubmit create a002
autosubmit refresh a002

Warning

Keep in mind that no parameters are disabled when custom_config is activated, including the jobs definitions.

Advanced configuration - Full dummy example (reproducible)

#Create a new experiment.
autosubmit expid -min -repo https://earth.bsc.es/gitlab/ces/auto-advanced_config_example -b main -conf as_conf -d "Test minimal conf"
expid=a04b
dbeltran@bsces107894: cd ~/autosubmit/a04b
dbeltran@bsces107894:~/autosubmit/a04b$ ls conf
minimal.yml

cat ~/autosubmit/conf/minimal.yml

CONFIG:
 AUTOSUBMIT_VERSION: "4.0.0b"
DEFAULT:
 EXPID: "a04b"
 HPCARCH: "local"
 #ADD, note that %PROJDIR% is an special AS_PLACEHOLDER that points to the expid folder.
 #hint: use %PROJDIR% to point to the project folder (where the project is cloned)
 CUSTOM_CONFIG: "%PROJDIR%/as_conf"
PROJECT:
 PROJECT_TYPE: "git"
 PROJECT_DESTINATION: "git_project"
GIT:
 PROJECT_ORIGIN: "https://earth.bsc.es/gitlab/ces/auto-advanced_config_example"
 PROJECT_BRANCH: "main"
 PROJECT_COMMIT: ""
 PROJECT_SUBMODULES: ""

Download the git project to obtain the distributed configuration
dbeltran@bsces107894: autosubmit refresh a04b
Check the downloaded model-configuration
dbeltran@bsces107894:~/autosubmit/a04b$ ls proj/git_project/as_conf/
autosubmit.yml expdef.yml jobs.yml platforms.yml

Model configuration is distributed at git. [https://earth.bsc.es/gitlab/ces/auto-advanced_config_example/-/tree/main/as_conf]

dbeltran@bsces107894:~/autosubmit/a04b$ cat ~/as_user_conf/platforms.yml

Platforms:
 MARENOSTRUM4:
 USER: bsc32xxx
 QUEUE: debug
 MAX_WALLCLOCK: "02:00"
 marenostrum_archive:
 USER: bsc32xxx
 transfer_node:
 USER: bsc32xxx
 transfer_node_bscearth000:
 USER: dbeltran
 bscearth000:
 USER: dbeltran
 nord3:
 USER: bsc32xxx
 ecmwf-xc40:
 USER: c3d

Note

The user configuration is not distributed, it is a local file that must be edited by the user.

Create and run the experiment, since it contains all the info!
autosubmit create a04b # if $expid/proj doesn't exists
autosubmit refresh a04b
autosubmit run a04b

The following figure shows the flow of the execution.

[image: Advanced configuration example]

10 Advanced configuration example

Sharing an advanced configuration

The expid command can copy another user’s existing expid to work correctly.

Note

This only copies the $expid/conf/{*.yml,*yaml} experiment configuration files.

#Create a new experiment.
autosubmit expid --copy a002 -H "LOCAL" -d "Advanced configuration. --copy of a002"
Get the expid from the output. Ex. expid=a004
cd $autosubmit_experiment_folder/a004
ls conf
minimal.yml
autosubmit create a004

Warning

All users must share the same experiment autosubmit.db for this to work. More info at shared-db [https://autosubmit.readthedocs.io/en/master/installation/index.html#production-environment-installation-shared-filesystem-database]

Sharing an experiment configuration across filesystems is possible only by including the same DEFAULT.CUSTOM_CONFIG and GIT.PROJECT_ORIGIN, GIT.PROJECT_BRANCH and GIT.PROJECT_TAG inside the expdef.yml file.

Variables reference

Autosubmit uses a variable substitution system to facilitate the
development of the templates. These variables can be used on templates
with the syntax %VARIABLE_NAME%.

All configuration variables that are not related to the current job
or platform are available by accessing first their parents, e.g.
%PROJECT.PROJECT_TYPE% or %DEFAULT.EXPID%.

You can review all variables at any given time by using the
report command, as illustrated below.

5 Example usage of autosubmit report

$ autosubmit report $expid -all

The command will save the list of variables available to a file
in the experiment area. The groups of variables of Autosubmit are
detailed in the next sections on this page.

Note

All the variable tables are displayed in alphabetical order.

Note

Custom configuration files (e.g. my-file.yml) may contain
configuration like this example:

MYAPP:
 MYPARAMETER: 42
 ANOTHER_PARAMETER: 1984

If you configure Autosubmit to include this file with the
rest of your configuration, then those variables will be
available to each job as %MYAPP.MYPARAMETER% and
%MYAPP.ANOTHER_PARAMETER%.

Job variables

These variables are relatives to the current job. These variables
appear in the output of the report command with the
pattern JOBS.${JOB_ID}.${JOB_VARIABLE}=${VALUE}. They can be used in
templates with %JOB_VARIABLE%.

	Variable

	Description

	CHECKPOINT

	Generates a checkpoint step for this job based on job.type.

	CHUNK

	Current chunk.

	CPUS_PER_TASK

	Number of threads that the job will use.

	CURRENT_QUEUE

	Returns the queue to be used by the job. Chooses between serial and parallel platforms.

	CUSTOM_DIRECTIVES

	List of custom directives.

	DELAY

	Current delay.

	DELAY_RETRIALS

	TODO

	DEPENDENCIES

	Current job dependencies.

	EXPORT

	TODO.

	FAIL_COUNT

	Number of failed attempts to run this job.

	FREQUENCY

	TODO.

	HYPERTHREADING

	Detects if hyperthreading is enabled or not.

	JOBNAME

	Current job full name.

	MEMBER

	Current member.

	MEMORY

	Memory requested for the job.

	MEMORY_PER_TASK

	Memory requested per task.

	NODES

	Number of nodes that the job will use.

	NUMMEMBERS

	Number of members of the experiment.

	NUMPROC

	Number of processors that the job will use.

	NUMTASK

	Number of tasks that the job will use.

	NUMTHREADS

	Number of threads that the job will use.

	PACKED

	TODO

	PROCESSORS

	Number of processors that the job will use.

	PROCESSORS_PER_NODE

	Number of processors per node that the job can use.

	PROJDIR

	Project folder path.

	RETRIALS

	Max amount of retrials to run this job.

	ROOTDIR

	Experiment folder path.

	SCRATCH_FREE_SPACE

	Percentage of free space required on the scratch.

	SDATE

	Current start date.

	SPLIT

	Current split.

	SPLITS

	Max number of splits.

	SYNCHRONIZE

	TODO.

	TASKS

	Number of tasks that the job will use.

	TASKS_PER_NODE

	Number of tasks that the job will use.

	TASKTYPE

	Type of the job, as given on job configuration file.

	THREADS

	Number of threads that the job will use.

	WALLCLOCK

	Duration for which nodes used by job will remain allocated.

The following variables are present only in jobs that contain a date
(e.g. RUNNING=date).

	Variable

	Description

	CHUNK_END_DATE

	Chunk end date.

	CHUNK_END_DAY

	Chunk end day.

	CHUNK_END_HOUR

	Chunk end hour.

	CHUNK_END_IN_DAYS

	Days passed from the start of the simulation until the end of the chunk.

	CHUNK_END_MONTH

	Chunk end month.

	CHUNK_END_YEAR

	Chunk end year.

	CHUNK_FIRST

	True if the current chunk is the first, false otherwise.

	CHUNK_LAST

	True if the current chunk is the last, false otherwise.

	CHUNK_SECOND_TO_LAST_DATE

	Chunk second to last date.

	CHUNK_SECOND_TO_LAST_DAY

	Chunk second to last day.

	CHUNK_SECOND_TO_LAST_HOUR

	Chunk second to last hour.

	CHUNK_SECOND_TO_LAST_MONTH

	Chunk second to last month.

	CHUNK_SECOND_TO_LAST_YEAR

	Chunk second to last year.

	CHUNK_START_DATE

	Chunk start date.

	CHUNK_START_DAY

	Chunk start day.

	CHUNK_START_HOUR

	Chunk start hour.

	CHUNK_START_MONTH

	Chunk start month.

	CHUNK_START_YEAR

	Chunk start year.

	DAY_BEFORE

	Day before the start date.

	NOTIFY_ON

	Determine the job statuses you want to be notified.

	PREV

	Days since start date at the chunk’s start.

	RUN_DAYS

	Chunk length in days.

Custom directives

There are job variables that Autosubmit automatically converts into
directives for your batch server. For example, NUMTHREADS will
be set in a Slurm platform as --SBATCH --cpus-per-task=$NUMTHREADS.

However, the variables in Autosubmit do not contain all the directives
available in each platform like Slurm. For values that do not have a
direct variable, you can use CUSTOM_DIRECTIVES to define them in
your target platform. For instance, to set the number of GPU’s in a Slurm
job, you can use CUSTOM_DIRECTIVES=--gpus-per-node=10.

Platform variables

These variables are relative to the platforms defined in each
job configuration. The table below shows the complete set of variables
available in the current platform. These variables appear in the
output of the report command with the pattern
JOBS.${JOB_ID}.${PLATFORM_VARIABLE}=${VALUE}. They can be used in
templates with %PLATFORM_VARIABLE%.

A series of variables is also available in each platform, and appear
in the output of the report command with the pattern
JOBS.${JOB_ID}.PLATFORMS.${PLATFORM_ID}.${PLATFORM_VARIABLE}=${VALUE}.
They can be used in templates with PLATFORMS.%PLATFORM_ID%.%PLATFORM_VARIABLE%.

	Variable

	Description

	CURRENT_ARCH

	Platform name.

	CURRENT_BUDG

	Platform budget.

	CURRENT_EXCLUSIVITY

	True if you want to request exclusivity nodes.

	CURRENT_HOST

	Platform url.

	CURRENT_HYPERTHREADING

	TODO

	CURRENT_LOGDIR

	The platform’s LOG directory.

	CURRENT_PARTITION

	Partition to use for jobs.

	CURRENT_PROJ

	Platform project.

	CURRENT_PROJ_DIR

	Platform’s project folder path.

	CURRENT_RESERVATION

	You can configure your reservation id for the given platform.

	CURRENT_ROOTDIR

	Platform’s experiment folder path.

	CURRENT_SCRATCH_DIR

	Platform’s scratch folder path.

	CURRENT_TYPE

	Platform scheduler type.

	CURRENT_USER

	Platform user.

Note

The variables _USER, _PROJ and _BUDG
have no value on the LOCAL platform.

Certain variables (e.g. _RESERVATION,
_EXCLUSIVITY) are only available for certain
platforms (e.g. MareNostrum).

A set of variables for the experiment’s default platform are
also available.

	Variable

	Description

	HPCARCH

	Default HPC platform name.

	HPCHOST

	Default HPC platform url.

	HPCUSER

	Default HPC platform user.

	HPCPROJ

	Default HPC platform project.

	HPCBUDG

	Default HPC platform budget.

	HPCTYPE

	Default HPC platform scheduler type.

	HPCVERSION

	Default HPC platform scheduler version.

	SCRATCH_DIR

	Default HPC platform scratch folder path.

	HPCROOTDIR

	Default HPC platform experiment’s folder path.

Other variables

	Variable

	Description

	CONFIG.AUTOSUBMIT_VERSION

	Current version of Autosubmit.

	CONFIG.MAXWAITINGJOBS

	Maximum number of jobs permitted in the waiting status.

	CONFIG.TOTALJOBS

	Total number of jobs in the workflow.

	Variable

	Description

	DEFAULT.CUSTOM_CONFIG

	Custom configuration location.

	DEFAULT.EXPID

	Job experiment ID.

	DEFAULT.HPCARCH

	Default HPC platform name.

	Variable

	Description

	EXPERIMENT.CALENDAR

	Calendar used for the experiment. Can be standard or noleap.

	EXPERIMENT.CHUNKSIZE

	Size of each chunk.

	EXPERIMENT.CHUNKSIZEUNIT

	Unit of the chunk size. Can be hour, day, month, or year.

	EXPERIMENT.DATELIST

	List of start dates

	EXPERIMENT.MEMBERS

	List of members.

	EXPERIMENT.NUMCHUNKS

	Number of chunks of the experiment.

	Variable

	Description

	PROJECT.PROJECT_DESTINATION

	Folder to hold the project sources.

	PROJECT.PROJECT_TYPE

	Type of the project.

Note

Depending on your project type other variables may
be available. For example, if you choose Git, then
you should have %PROJECT_ORIGIN%. If you choose
Subversion, then you will have %PROJECT_URL%.

Performance Metrics variables

These variables apply only to the report subcommand.

	Variable

	Description

	ASYPD

	Actual simulated years per day.

	CHSY

	Core hours per simulated year.

	JPSY

	Joules per simulated year.

	Parallelization

	Number of cores requested for the simulation job.

	RSYPD

	Raw simulated years per day.

	SYPD

	Simulated years per day.

Experiment ID’s

Autosubmit 4 uses a SQLite database to automatically generate unique
experiment ID’s. The ID’s of Autosubmit experiments start from a000
and have at least four alpha-numerical characters, using digits from
0 to 9 and the 26 letters from the English alphabet, from a
to z.

Internally, experiment ID’s are case insensitive, but for Autosubmit
commands this may not always be true, i.e. autosubmit monitor a000
works for the experiment a000, but not autosubmit monitor A000,
even though internally both a000 and A000 would be stored the same
way in the SQLite database.

That is because experiment ID’s are treated as Base-36 strings, being
first decoded into integers with Base-36 (where a and A are both equal
to 10, b and B equal to 11, etc. — int('a', 36) in Python).

Autosubmit provides functions that could be used by external code to produce
a new experiment, or to simply calculate the next experiment ID, given the
last available experiment ID. The code below shows an example of the latter:

from autosubmit.experiment.experiment_common import next_experiment_id

expid = next_experiment_id('a000’)
print(expid) # prints 'a001’

expid = next_experiment_id('jedi’)
print(expid) # prints 'jedj’

expid = next_experiment_id('zzzz’)
print(expid) # prints '10000’

To generate the next experiment ID, the decoded integer value is incremented
by 1, and then re-encoded as a Base-36 string. For example, a000 is decoded
as 466560, so the next ID is calculated as 466560 + 1 = 466561. Finally,
466561 is re-encoded as Base-36, resulting in a001.

After the default initial experiment ID a000, the next generated experiment
ID is a001, and it keeps being increased automatically by Autosubmit from
a001, to a002, a003, …, azzz and then the next experiment ID b000.

And the process repeats every time users ask Autosubmit to create a new
experiment.

Users can create “test experiments” which experiment ID’s start at t001,
and “operational experiments” which experiment ID’s start at o001.
This is done via flags passed to the autosubmit expid in the command-line.

There is no other way for users to modify the automatic generation of
experiment ID’s in Autosubmit (other than manually editing the SQLite database).

The total number of available unique experiment ID’s in Autosubmit with four
characters is 1213055 experiment ID’s (the difference between a000 and
zzzz Base-36 decoded as integers). After the experiment zzzz, the next
experiment ID generated by Autosubmit would be 10000, followed by 10001,
10002, and so on successfully.

Provenance

Autosubmit manages experiments following the FAIR data [https://en.wikipedia.org/wiki/FAIR_data] principles,
findability, accessibility, interoperability, and reusability. It
supports and uses open standards such as YAML, RO-Crate, as well as
other standards such as ISO-8601.

Each Autosubmit experiment is assigned a unique experiment ID
(also called expid). It also provides a central database and utilities
that permit experiments to be referenced.

Every Autosubmit command issued by a user generates a timestamped log
file in <EXPID>/tmp/ASLOGS/. For example, when the user runs
autosubmit create <EXPID> and autosubmit run <EXPID>, these
commands should create files like <EXPID>/tmp/ASLOGS/20230808_092350_create.log
and <EXPID>/tmp/ASLOGS/20230808_092400_run.log, with the same content
that was displayed in the console output to the user running it.

Users can archive Autosubmit experiments. These archives contain the complete
logs and other files in the experiment directory, and can be later unarchived
and executed again. Supported archival formats are ZIP and RO-Crate.

RO-Crate

RO-Crate is a community standard adopted by other workflow managers
to package research data with their metadata. It is extensible, and contains
profiles to package computational workflows. From the RO-Crate [https://www.researchobject.org/ro-crate/] website,
“What is RO-Crate?”:

RO-Crate is a community effort to establish a lightweight approach to
packaging research data with their metadata. It is based on schema.org
annotations in JSON-LD, and aims to make best-practice in formal
metadata description accessible and practical for use in a wider variety
of situations, from an individual researcher working with a folder of
data, to large data-intensive computational research environments.

Autosubmit conforms [https://github.com/ResearchObject/workflow-run-crate/pull/61] to the following RO-Crate profiles:

	Process Run Crate

	Workflow Run Crate

	Workflow RO-Crate

Experiments archived as RO-Crate can also be uploaded to Zenodo [https://zenodo.org/] and
to WorkflowHub [https://workflowhub.eu/]. The Autosubmit team worked with the WorkflowHub team
to add Autosubmit as a supported language for workflows. Both Zenodo
and WorkflowHub are issuers of DOI [https://en.wikipedia.org/wiki/Digital_object_identifier]’s (digital object identifiers),
which can be used as persistent identifiers to resolve Autosubmit
experiments referenced in papers and other documents.

Databases

Introduction

Autosubmit stores information about its experiments and workflows in SQLite
databases and as serialized Python objects (pickle files). These are
distributed through the local filesystem, where Autosubmit is installed and runs.

There is one central database that supports the core functionality of
experiments in Autosubmit. There are other auxiliary databases consumed
by Autosubmit and the Autosubmit API, that store finer-grained experiment information.

The name and location of the central database are defined in the .autosubmitrc
configuration file while the other auxiliary databases have a predefined name.
There are also log files with important information about experiment execution and
some other relevant information such as experiment job statuses, timestamps, error
messages among other things inside these files.

Note

The <EXPID> is an experiment ID. The location of the databases of
other files can be customized in the .autosubmitrc configuration file.

[image: High level view of the Autosubmit storage system]

Core databases

	Database

	Default location

	Description

	autosubmit.db

	$HOME/autosubmit/autosubmit.db

	The main database of Autosubmit. The location can be customized in the autosubmitrc file.

	as_times.db

	$HOME/autosubmit/as_times.db

	Deprecated API. Used by Autosubmit API with Autosubmit 3.x. Kept for backward compatibility for now.

Auxiliary databases

These databases complement the databases previously described for different purposes.
Some of them are centralized in the $AS_METADATA directory (defined in the
.autosubmitrc config file) while others are present inside each experiment folder.

Databases in the $AS_METADATA directory

	Database

	Default location

	Description

	graph_data_<EXPID>.db

	$HOME/autosubmit/metadata/graph/graph_data_<EXPID>.db

	Used by the GUI to improve the graph visualization. Populated by an API worker.

	structure_<EXPID>.db

	$HOME/autosubmit/metadata/structures/structure_<EXPID>.db

	Used by the GUI to display edge lists. Populated by an API worker.

	status.db

	$HOME/autosubmit/metadata/test/status.db

	Stores the status of the partition where Autosubmit databases and experiment files are stored. Populated by an API worker.

	job_data_<EXPID>.db

	$HOME/autosubmit/metadata/data/job_data_<EXPID>.db

	Stores experiment metrics and historical information. Populated by Autosubmit.

Databases in each experiment directory

	Database

	Default location

	Description

	job_packages_<EXPID>.db

	$HOME/autosubmit/<EXPID>/pkl/job_packages_<EXPID>.db

	Stores information about the wrappers configured in the experiment. Empty if no wrappers configured.

	structure_<EXPID>.db

	$HOME/autosubmit/<EXPID>/pkl/structure_<EXPID>.db

	Deprecated. Used in Autosubmit 3.x, now replaced by the database used by the Autosubmit API (described above).

Other files

Autosubmit stores Pickle files (e.g. $HOME/autosubmit/<EXPID>/pkl/job_list_<EXPID>.pkl)
with the job list of experiments. In the event of a crash, or if the user stops the
experiment, that Pickle file is used in order to be able to restore the experiment to
its latest status.

There are also update list files, used to change the status of experiment jobs
without stopping Autosubmit. These files are plain text files, and also present
in the experiment directory.

Error codes and solutions

Note

Increasing the logging level gives you more detailed information
about your error, e.g. autosubmit -lc DEBUG -lf DEBUG <CMD>,
where <CMD> could be create, run, etc.

Every error in Autosubmit contains a numeric error code, to help users and developers
to identify the category of the error. These errors are organized as follows:

	Level

	Starts from

	EVERYTHING

	0

	STATUS_FAILED

	500

	STATUS

	1000

	DEBUG

	2000

	WARNING

	3000

	INFO

	4000

	RESULT

	5000

	ERROR

	6000

	CRITICAL

	7000

	NO_LOG

	8000

Levels such as DEBUG, WARNING, INFO, and RESULT are commonly
used when writing log messages. You may find it in the output of commands in
case there is a minor issue with your configuration such as a deprecated call.

The two levels that normally appear with traceback and important log messages
are either ERROR or CRITICAL.

Autosubmit has two error types. AutosubmitError uses the ERRORR level,
and is raised for minor errors where the program execution may be able to
recover. AutosubmitCritical uses the CRITICAL level and is for errors
that abort the program execution.

The detailed error codes along with details and possible workarounds are
listed below.

Minor errors - Error codes [6000+]

	Code

	Details

	Solution

	6001

	Failed to retrieve log files

	Automatically, if there are no major issues

	6002

	Failed to reconnect

	Automatically, if there are no major issues

	6003

	Failed connection, wrong configuration

	Check your platform configuration

	6004

	Input output issues

	Automatically, if there are no major issues

	6005

	Unable to execute the command

	Automatically, if there are no major issues

	6006

	Failed command

	Check err output for more info, command worked but some issue was detected

	6007

	Broken sFTP connection

	Automatically, if there are no major issues

	6008

	Inconsistent/unexpected, job status

	Automatically, if there are no major issues

	6009

	Failed job checker

	Automatically, if there are no major issues

	6010

	Corrupted job_list using backup

	Automatically, if it fails try mv <EXPID>/pkl/job_list_backup.pkl <EXPID>/pkl/job_list.pkl

	6011

	Incorrect mail notifier configuration

	Double check your mail configuration on your job configuration (job status) and
the experiment configuration (email)

	6012

	Migrate, archive/unarchive I/O issues

	Check the migrate configuration

	6013

	Configuration issues

	Check log output for more info

	6014

	Git can not clone repository submodule

	Check submodule url, perform a refresh

	6015

	Submission failed

	Automatically, if there are no major issues

	6016

	Temporary connection issues

	Automatically, if there are no major issues

Experiment Locked - Critical Error 7000

	Code

	Details

	Solution

	7000

	Experiment is locked due another instance of Autosubmit using it

	Halt other experiment instances, then rm <EXPID>/tmp/autosubmit.lock

Database Issues - Critical Error codes [7001-7009]

These issues occur due to server side issues. Check your site settings, and
report an issue to the Autosubmit team in Git if the issue persists.

	Code

	Details

	Solution

	7001

	Connection to the db could not be established

	Check if database exists

	7002

	Wrong version

	Check system sqlite version

	7003

	Database doesn’t exist

	Check if database exists

	7004

	Can’t create a new database

	Check your user permissions

	7005

	AS database is corrupted or locked

	Report the issue to the Autosubmit team in Git

	7006

	Experiment database not found

	Ask the site administrator to run autosubmit install

	7007

	Experiment database permissions

	Invalid permissions, ask your administrator to add R/W

Wrong User Input - Critical Error codes [7010-7030]

These issues are caused by the user input. Check the logs and also the
existing issues in git for possible workarounds. Report an issue to the
Autosubmit team in Git if the issue persists.

	Code

	Details

	Solution

	7010

	Experiment has been halted manually

	

	7011

	Wrong arguments for a specific command

	Check the command section for more information

	7012

	Insufficient permissions for an specific experiment

	Check if you have enough permissions, and that the experiment exists

	7013

	Pending commits

	You must commit pending changes in the experiment proj folder

	7014

	Wrong configuration

	Check your experiment configuration files, and at the <EXPID>/tmp/ASLOG/<CMD>.log output

	7015

	Job list is empty

	Check your experiment configuration files

Platform issues - Critical Error codes. Local [7040-7050] and remote [7050-7060]

The Autosubmit logs should contain more detailed information about the error.
Check your platform configuration and general status (connectivity, permissions,
etc.).

	Code

	Details

	Solution

	7040

	Invalid experiment pkl or db files

	Should be recovered automatically, if not check if there is a backup file and do it manually

	7041

	Unexpected job status

	Try to run autosubmit recovery <EXPID>, report the issue to the Autosubmit team if it persists

	7050

	Connection can not be established

	Check your experiment platform configuration

	7051

	Invalid SSH configuration

	Check .ssh/config file. Additionally, check if you can perform a password-less connection to that platform

	7052

	Scheduler is not installed or not correctly configured

	Check if there is a scheduler installed in the remote machine

Uncatalogued codes - Critical Error codes [7060+]

The Autosubmit logs should contain more detailed information about the error.
If you believe you found a bug, feel free to report an issue to the Autosubmit
team in Git.

	Code

	Details

	Solution

	7060

	Display issues during monitoring

	Use a different output or use plain text (txt)

	7061

	Stat command failed

	Check the command output in ASLOGS for a possible bug, report it to the Autosubmit team in Git

	7062

	Svn issues

	Check if URL was configured in the experiment configuration

	7063

	cp/rsync issues

	Check if destination path exists

	7064

	Git issues

	Check GIT: experiment configuration. If issue persists, check if proj folder is a valid Git repository

	7065

	Wrong git configuration

	Invalid Git url. Check GIT: experiment configuration. If issue persists, check if proj folder is a valid Git repository

	7066

	Pre-submission feature issues

	New feature, this message should not be issued, Please report it in Git

	7067

	Historical Database not found

	Configure historicdb: PATH:<file_path>

	7068

	Monitor output can’t be loaded

	Try another output method, check if the experiment exists and is readable

	7069

	Monitor output format invalid

	Try another output method

	7070

	Bug in the code

	Please submit an issue to the Autosubmit team in Git

	7071

	AS can’t run in this host

	If you think that this is an error, check the .autosubmitrc and modify the allowed and forbidden directives

	7072

	Basic configuration not found

	Administrator: run autosubmit configure --advanced or create a common file in /etc/autosubmitrc.
User: run autosubmit configure or create a $HOME/.autosubmitrc (consult the installation documentation)

	7073

	Private key is encrypted

	Add your key to your ssh agent, e.g. ssh-add $HOME/.ssh/id_rsa, then try running Autosubmit again.
You can also use a non-encrypted key (make sure nobody else has access to the file)

	7074

	Profiling process failed

	You can find more detailed information in the logs, as well as hints to solve the problem

Note

Please submit an issue to the Autosubmit team if you have not found your error
code listed here.

Changelog

This page shows the main changes from AS3 to AS4.

Mayor mentions:

	Python version has changed to 3.7.3 instead of 2.7.

	Configuration language has changed to YAML.

	All parameters are now unified into a single dictionary.

	All sections are now uppercase.

	All parameters, except for job related ones, have now an hierarchy.

	An special key, FOR:, has been added. This key allows to create multiple jobs with almost the same configuration.

	The configuration of autosubmit is now more flexible.

	New command added, upgrade. This command will update all the scripts and autosubmit configuration.

	Wrapper definition has changed.

	Tasks dependencies system has changed.

	Added the parameter DELETE_WHEN_EDGELESS (boolean) to the section JOBS. This parameter allows to delete a job when it has no edges. (default TRUE)

Warning

The configuration language has changed. Please, check the new configuration file format.

Warning

The wrapper definition has changed. Please, check the new wrapper definition.

Warning

The tasks dependencies system has changed. Please, check the new tasks dependencies system.

Warning

Edgeless jobs are now deleted by default. Please, check the new parameter DELETE_WHEN_EDGELESS.

Warning

upgrade may not translate all the scripts, we recommend to revise your scripts before run AS.

Configuration changes

Now autosubmit is composed by two kind of YAML configurations, the default ones, which are the same as always, and the custom ones.

The custom ones, allows to define custom configurations that will override the default ones, in order to do this, you only have to put the key in the custom configuration file.
These custom ones, can be anywhere and have any name, by default they’re inside <expid>/conf but you can change this path in the expdef.yml file. DEFAULT.CUSTOM_CONFIG

Additionally, you must be aware of the following changes:

	All sections keys are normalized to UPPERCASE, while values remain as the user put. Beware of the scripts that relies on %CURRENT_HPCARCH% and variables that refer to a platform because they will be always in UPPERCASE. Normalize the script.

	To define a job, you must put them under the key jobs in any custom configuration file.

	To define a platform, you must put them under the key platforms in any custom configuration file.

	To define a loop, you must put the key “FOR” as the first key of the section.

	You can put any %placeholder% in the proj.yml and custom files, and also you can put %ROOTDIR% in the expdef.yml.

	All configuration is now based in an hierarchical structure, so to export a var, you must use the following syntax: %KEY.SUBKEY.SUBSUBKEY%. The same goes for override them.

	YAML has into account the type.

Examples

List of example with the new configuration and the structure as follows

$/autosubmit/a00q/conf$ ls
autosubmit_a00q.yml custom_conf expdef_a00q.yml jobs_a00q.yml platforms_a00q.yml
$/autosubmit/a00q/conf/custom_conf ls
more_jobs.yml

Configuration

autosubmit_expid.yml

config:
 AUTOSUBMIT_VERSION: 4.0.0b
 MAXWAITINGJOBS: '3000'
 TOTALJOBS: '3000'
 SAFETYSLEEPTIME: 0
 RETRIALS: '10'
mail:
 NOTIFICATIONS: 'False'
 TO: daniel.beltran@bsc.es

expdef_expid.yml

DEFAULT:
 EXPID: a02u
 HPCARCH: local
 CUSTOM_CONFIG: "%ROOTDIR%/conf/custom_conf"
experiment:
 DATELIST: '20210811'
 MEMBERS: CompilationEfficiency HardwareBenchmarks WeakScaling StrongScaling
 CHUNKSIZEUNIT: hour
 CHUNKSIZE: '6'
 NUMCHUNKS: '2'
 CALENDAR: standard
rerun:
 RERUN: 'FALSE'
 CHUNKLIST: ''
project:
 PROJECT_TYPE: local
 PROJECT_DESTINATION: r_test
git:
 PROJECT_ORIGIN: https://earth.bsc.es/gitlab/ces/automatic_performance_profiling.git
 PROJECT_BRANCH: autosubmit-makefile1
 PROJECT_COMMIT: ''
svn:
 PROJECT_URL: ''
 PROJECT_REVISION: ''
local:
 PROJECT_PATH: /home/dbeltran/r_test
project_files:
 FILE_PROJECT_CONF: ''
 FILE_JOBS_CONF: ''

jobs_expid.yml

JOBS:
 LOCAL_SETUP:
 FILE: LOCAL_SETUP.sh
 PLATFORM: LOCAL
 RUNNING: "once"
 REMOTE_SETUP:
 FILE: REMOTE_SETUP.sh
 DEPENDENCIES: LOCAL_SETUP
 WALLCLOCK: '00:05'
 RUNNING: once
 NOTIFY_ON: READY SUBMITTED QUEUING COMPLETED
 INI:
 FILE: INI.sh
 DEPENDENCIES: REMOTE_SETUP
 RUNNING: member
 WALLCLOCK: '00:05'
 NOTIFY_ON: READY SUBMITTED QUEUING COMPLETED

 SIM:
 FOR:
 NAME: [20,40,80]
 PROCESSORS: [2,4,8]
 THREADS: [1,1,1]
 DEPENDENCIES: [INI SIM_20-1 CLEAN-2, INI SIM_40-1 CLEAN-2, INI SIM_80-1 CLEAN-2]
 NOTIFY_ON: READY SUBMITTED QUEUING COMPLETED

 FILE: SIM.sh
 DEPENDENCIES: INI SIM_20-1 CLEAN-2
 RUNNING: chunk
 WALLCLOCK: '00:05'
 TASKS: '1'
 NOTIFY_ON: READY SUBMITTED QUEUING COMPLETED

 POST:
 FOR:
 NAME: [20,40,80]
 PROCESSORS: [20,40,80]
 THREADS: [1,1,1]
 DEPENDENCIES: [SIM_20 POST_20-1,SIM_40 POST_40-1,SIM_80 POST_80-1]
 FILE: POST.sh
 RUNNING: chunk
 WALLCLOCK: '00:05'
 CLEAN:
 FILE: CLEAN.sh
 DEPENDENCIES: POST_20 POST_40 POST_80
 RUNNING: chunk
 WALLCLOCK: '00:05'
 TRANSFER:
 FILE: TRANSFER.sh
 PLATFORM: LOCAL
 DEPENDENCIES: CLEAN
 RUNNING: member

platforms_expid.yml

Platforms:
 MaReNoStRuM4:
 TYPE: slurm
 HOST: bsc
 PROJECT: bsc32
 USER: bsc32070
 QUEUE: debug
 SCRATCH_DIR: /gpfs/scratch
 ADD_PROJECT_TO_HOST: False
 MAX_WALLCLOCK: '48:00'
 USER_TO: pr1enx13
 TEMP_DIR: ''
 SAME_USER: False
 PROJECT_TO: pr1enx00
 HOST_TO: bscprace
 marenostrum_archive:
 TYPE: ps
 HOST: dt02.bsc.es
 PROJECT: bsc32
 USER: bsc32070
 SCRATCH_DIR: /gpfs/scratch
 ADD_PROJECT_TO_HOST: 'False'
 TEST_SUITE: 'False'
 USER_TO: pr1enx13
 TEMP_DIR: /gpfs/scratch/bsc32/bsc32070/test_migrate
 SAME_USER: false
 PROJECT_TO: pr1enx00
 HOST_TO: transferprace
 transfer_node:
 TYPE: ps
 HOST: dt01.bsc.es
 PROJECT: bsc32
 USER: bsc32070
 ADD_PROJECT_TO_HOST: false
 SCRATCH_DIR: /gpfs/scratch
 USER_TO: pr1enx13
 TEMP_DIR: /gpfs/scratch/bsc32/bsc32070/test_migrate
 SAME_USER: false
 PROJECT_TO: pr1enx00
 HOST_TO: transferprace
 transfer_node_bscearth000:
 TYPE: ps
 HOST: bscearth000
 USER: dbeltran
 PROJECT: Earth
 ADD_PROJECT_TO_HOST: false
 QUEUE: serial
 SCRATCH_DIR: /esarchive/scratch
 USER_TO: dbeltran
 TEMP_DIR: ''
 SAME_USER: true
 PROJECT_TO: Earth
 HOST_TO: bscpraceearth000
 bscearth000:
 TYPE: ps
 HOST: bscearth000
 USER: dbeltran
 PROJECT: Earth
 ADD_PROJECT_TO_HOST: false
 QUEUE: serial
 SCRATCH_DIR: /esarchive/scratch
 nord3:
 TYPE: SLURM
 HOST: nord1.bsc.es
 PROJECT: bsc32
 USER: bsc32070
 QUEUE: debug
 SCRATCH_DIR: /gpfs/scratch
 MAX_WALLCLOCK: '48:00'
 USER_TO: pr1enx13
 TEMP_DIR: ''
 SAME_USER: true
 PROJECT_TO: pr1enx00
 ecmwf-xc40:
 TYPE: ecaccess
 VERSION: pbs
 HOST: cca
 USER: c3d
 PROJECT: spesiccf
 ADD_PROJECT_TO_HOST: false
 SCRATCH_DIR: /scratch/ms
 QUEUE: np
 SERIAL_QUEUE: ns
 MAX_WALLCLOCK: '48:00'

custom_conf/more_jobs.yml

jobs:
 Additional_job_1:
 FILE: extrajob.sh
 DEPENDENCIES: POST_20
 RUNNING: once
 additional_job_2:
 FILE: extrajob.sh
 RUNNING: once

Wrappers definition

To define a the wrappers:

wrappers:
 wrapper_sim20:
 TYPE: "vertical"
 JOBS_IN_WRAPPER: "SIM_20"
 wrapper_sim40:
 TYPE: "vertical"
 JOBS_IN_WRAPPER: "SIM_40"

Loops definition

To define a loop, you need to use the FOR key and also the NAME key.

In order to generate the following jobs:

experiment:
 DATELIST: 19600101
 MEMBERS: "00"
 CHUNKSIZEUNIT: day
 CHUNKSIZE: '1'
 NUMCHUNKS: '2'
 CALENDAR: standard
JOBS:
 POST_20:

 DEPENDENCIES:
 POST_20:
 SIM_20:
 FILE: POST.sh
 PROCESSORS: '20'
 RUNNING: chunk
 THREADS: '1'
 WALLCLOCK: 00:05
 POST_40:

 DEPENDENCIES:
 POST_40:
 SIM_40:
 FILE: POST.sh
 PROCESSORS: '40'
 RUNNING: chunk
 THREADS: '1'
 WALLCLOCK: 00:05
 POST_80:

 DEPENDENCIES:
 POST_80:
 SIM_80:
 FILE: POST.sh
 PROCESSORS: '80'
 RUNNING: chunk
 THREADS: '1'
 WALLCLOCK: 00:05
 SIM_20:

 DEPENDENCIES:
 SIM_20-1:
 FILE: POST.sh
 PROCESSORS: '20'
 RUNNING: chunk
 THREADS: '1'
 WALLCLOCK: 00:05
 SIM_40:

 DEPENDENCIES:
 SIM_40-1:
 FILE: POST.sh
 PROCESSORS: '40'
 RUNNING: chunk
 THREADS: '1'
 WALLCLOCK: 00:05
 SIM_80:

 DEPENDENCIES:
 SIM_80-1:
 FILE: POST.sh
 PROCESSORS: '80'
 RUNNING: chunk
 THREADS: '1'
 WALLCLOCK: 00:05

One can use now the following configuration:

experiment:
 DATELIST: 19600101
 MEMBERS: "00"
 CHUNKSIZEUNIT: day
 CHUNKSIZE: '1'
 NUMCHUNKS: '2'
 CALENDAR: standard
JOBS:
 SIM:
 FOR:
 NAME: [20,40,80]
 PROCESSORS: [20,40,80]
 THREADS: [1,1,1]
 DEPENDENCIES: [SIM_20-1,SIM_40-1,SIM_80-1]
 FILE: POST.sh
 RUNNING: chunk
 WALLCLOCK: '00:05'
 POST:
 FOR:
 NAME: [20,40,80]
 PROCESSORS: [20,40,80]
 THREADS: [1,1,1]
 DEPENDENCIES: [SIM_20 POST_20,SIM_40 POST_40,SIM_80 POST_80]
 FILE: POST.sh
 RUNNING: chunk
 WALLCLOCK: '00:05'

Warning

Only the parameters that changes must be included inside the FOR key.

Dependencies rework

The DEPENDENCIES key is used to define the dependencies of a job. It can be used in the following ways:

	Basic: The dependencies are a list of jobs, separated by “ “, that runs before the current task is submitted.

	New: The dependencies is a list of YAML sections, separated by “n”, that runs before the current job is submitted.

	For each dependency section, you can designate the following keywords to control the current job-affected tasks:

	DATES_FROM: Selects the job dates that you want to alter.

	MEMBERS_FROM: Selects the job members that you want to alter.

	CHUNKS_FROM: Selects the job chunks that you want to alter.

	For each dependency section and *_FROM keyword, you can designate the following keywords to control the destination of the dependency:

	DATES_TO: Links current selected tasks to the dependency tasks of the dates specified.

	MEMBERS_TO: Links current selected tasks to the dependency tasks of the members specified.

	CHUNKS_TO: Links current selected tasks to the dependency tasks of the chunks specified.

	Important keywords for [DATES|MEMBERS|CHUNKS]_TO:

	“natural”: Will keep the default linkage. Will link if it would be normally. Example, SIM_FC00_CHUNK_1 -> DA_FC00_CHUNK_1.

	“all”: Will link all selected tasks of the dependency with current selected tasks. Example, SIM_FC00_CHUNK_1 -> DA_FC00_CHUNK_1, DA_FC00_CHUNK_2, DA_FC00_CHUNK_3…

	“none”: Will unlink selected tasks of the dependency with current selected tasks.

For the new format, consider that the priority is hierarchy and goes like this DATES_FROM -(includes)-> MEMBERS_FROM -(includes)-> CHUNKS_FROM.

	You can define a DATES_FROM inside the DEPENDENCY.

	You can define a MEMBERS_FROM inside the DEPENDENCY and DEPENDENCY.DATES_FROM.

	You can define a CHUNKS_FROM inside the DEPENDENCY, DEPENDENCY.DATES_FROM, DEPENDENCY.MEMBERS_FROM, DEPENDENCY.DATES_FROM.MEMBERS_FROM

For the examples, we will consider that our experiment has the following configuration:

EXPERIMENT:
 DATELIST: 20220101
 MEMBERS: FC1 FC2
 NUMCHUNKS: 4

Basic

JOBS:
 JOB_1:
 FILE: job1.sh
 RUNNING: chunk
 JOB_2:
 FILE: job2.sh
 DEPENDENCIES: JOB_1
 RUNNING: chunk
 JOB_3:
 FILE: job3.sh
 DEPENDENCIES: JOB_2
 RUNNING: chunk
 SIM:
 FILE: sim.sh
 DEPENDENCIES: JOB_3 SIM-1
 RUNNING: chunk
 POST:
 FILE: post.sh
 DEPENDENCIES: SIM
 RUNNING: chunk
 TEST:
 FILE: test.sh
 DEPENDENCIES: POST
 RUNNING: chunk

New format

JOBS:
 JOB_1:
 FILE: job1.sh
 RUNNING: chunk
 JOB_2:
 FILE: job2.sh
 DEPENDENCIES:
 JOB_1:
 dates_to: "natural"
 members_to: "natural"
 chunks_to: "natural"
 RUNNING: chunk
 JOB_3:
 FILE: job3.sh
 DEPENDENCIES:
 JOB_2:
 dates_to: "natural"
 members_to: "natural"
 chunks_to: "natural"
 RUNNING: chunk
 SIM:
 FILE: sim.sh
 DEPENDENCIES:
 JOB_3:
 dates_to: "natural"
 members_to: "natural"
 chunks_to: "natural"
 SIM-1:
 dates_to: "natural"
 members_to: "natural"
 chunks_to: "natural"
 RUNNING: chunk
 POST:
 FILE: post.sh
 DEPENDENCIES:
 SIM:
 dates_to: "natural"
 members_to: "natural"
 chunks_to: "natural"
 RUNNING: chunk
 TEST:
 FILE: test.sh
 DEPENDENCIES:
 POST:
 dates_to: "natural"
 members_to: "natural"
 chunks_to: "natural"
 RUNNING: chunk

[image: new_dependencies]

Example 1: New format with specific dependencies

In the following example, we want to launch the next member SIM after the last SIM chunk of the previous member is finished.

JOBS:
 JOB_1:
 FILE: job1.sh
 RUNNING: chunk
 JOB_2:
 FILE: job2.sh
 DEPENDENCIES:
 JOB_1:
 RUNNING: chunk
 JOB_3:
 FILE: job3.sh
 DEPENDENCIES:
 JOB_2:
 RUNNING: chunk
 SIM:
 FILE: sim.sh
 DEPENDENCIES:
 JOB_3:
 SIM-1:
 SIM:
 MEMBERS_FROM:
 FC2:
 CHUNKS_FROM:
 1:
 dates_to: "all"
 members_to: "FC1"
 chunks_to: "4"
 RUNNING: chunk
 POST:
 FILE: post.sh
 DEPENDENCIES:
 SIM:
 RUNNING: chunk
 TEST:
 FILE: test.sh
 DEPENDENCIES:
 POST:
 members_to: "FC2"
 chunks_to: 4
 RUNNING: once

[image: new_dependencies]

Example 2: Crossdate wrappers using the the new dependencies

experiment:
 DATELIST: 20120101 20120201
 MEMBERS: "000 001"
 CHUNKSIZEUNIT: day
 CHUNKSIZE: '1'
 NUMCHUNKS: '3'
wrappers:
 wrapper_simda:
 TYPE: "horizontal-vertical"
 JOBS_IN_WRAPPER: "SIM DA"

JOBS:
 LOCAL_SETUP:
 FILE: templates/local_setup.sh
 PLATFORM: marenostrum_archive
 RUNNING: once
 NOTIFY_ON: COMPLETED
 LOCAL_SEND_SOURCE:
 FILE: templates/01_local_send_source.sh
 PLATFORM: marenostrum_archive
 DEPENDENCIES: LOCAL_SETUP
 RUNNING: once
 NOTIFY_ON: FAILED
 LOCAL_SEND_STATIC:
 FILE: templates/01b_local_send_static.sh
 PLATFORM: marenostrum_archive
 DEPENDENCIES: LOCAL_SETUP
 RUNNING: once
 NOTIFY_ON: FAILED
 REMOTE_COMPILE:
 FILE: templates/02_compile.sh
 DEPENDENCIES: LOCAL_SEND_SOURCE
 RUNNING: once
 PROCESSORS: '4'
 WALLCLOCK: 00:50
 NOTIFY_ON: COMPLETED
 SIM:
 FILE: templates/05b_sim.sh
 DEPENDENCIES:
 LOCAL_SEND_STATIC:
 REMOTE_COMPILE:
 SIM-1:
 DA-1:
 RUNNING: chunk
 PROCESSORS: '68'
 WALLCLOCK: 00:12
 NOTIFY_ON: FAILED
 LOCAL_SEND_INITIAL_DA:
 FILE: templates/00b_local_send_initial_DA.sh
 PLATFORM: marenostrum_archive
 DEPENDENCIES: LOCAL_SETUP LOCAL_SEND_INITIAL_DA-1
 RUNNING: chunk
 SYNCHRONIZE: member
 DELAY: '0'
 COMPILE_DA:
 FILE: templates/02b_compile_da.sh
 DEPENDENCIES: LOCAL_SEND_SOURCE
 RUNNING: once
 WALLCLOCK: 00:20
 NOTIFY_ON: FAILED
 DA:
 FILE: templates/05c_da.sh
 DEPENDENCIES:
 SIM:
 LOCAL_SEND_INITIAL_DA:
 CHUNKS_TO: "all"
 DATES_TO: "all"
 MEMBERS_TO: "all"
 COMPILE_DA:
 DA:
 DATES_FROM:
 "20120201":
 CHUNKS_FROM:
 1:
 DATES_TO: "20120101"
 CHUNKS_TO: "1"
 RUNNING: chunk
 SYNCHRONIZE: member
 DELAY: '0'
 WALLCLOCK: 00:12
 PROCESSORS: '256'
 NOTIFY_ON: FAILED

[image: crossdate-example]

Troubleshooting

	Error codes and solutions

	Changelog

Troubleshooting

How to change the job status stopping autosubmit

Review How to change the job status.

How to change the job status without stopping autosubmit

Review How to change the job status without stopping autosubmit.

My project parameters are not being substituted in the templates

Explanation: If there is a duplicated section or option in any other side of autosubmit, including proj files It won’t be able to recognize which option pertains to what section in which file.

Solution: Don’t repeat section names and parameters names until Autosubmit 4.0 release.

Unable to recover remote logs files.

Explanation: If there are limitations on the remote platform regarding multiple connections,
Solution: You can try DISABLE_RECOVERY_THREADS: TRUE under the platform_name: section in the platform.yml.

Error on create caused by a configuration parsing error

When running create you can come across an error similar to:

[ERROR] Trace: '%' must be followed by '%' or '(', found: u'%HPCROOTDIR%/remoteconfig/%CURRENT_ARCH%_launcher.sh'

The important part of this error is the message '%' must be followed by '%'. It indicated that the source of the error is the configparser library.
This library is included in the python common libraries, so you shouldn’t have any other version of it installed in your environment. Execute pip list, if you see
configparser in the list, then run pip uninstall configparser. Then, try to create your experiment again.

Other possible errors

I see the `database malformed` error on my experiment log.

Explanation: The latest version of autosubmit uses a database to efficiently track changes in the jobs of your experiment. It could have happened that this small database got corrupted.

Solution: run autosubmit dbfix expid where expid is the identifier of your experiment. This function will rebuild the database saving as much information as possible (usually all of it).

The pkl file of my experiment is empty but there is a job_list_%expid%_backup.pkl file that seems to be the real one.

Solution: run autosubmit pklfix expid, it will restore the backup file if possible.

Error codes

The latest version of Autosubmit implements a code system that guides you through the process of fixing some of the common problems you might find. Check Error codes and solutions, where you will find the list of error codes, their descriptions, and solutions.

Changelog

review Changelog.

API

	autosubmit

	autosubmit.config

	autosubmit.database

	autosubmit.git

	autosubmit.job

	autosubmit.monitor

	autosubmit.platform

autosubmit

	
class autosubmit.autosubmit.Autosubmit

	Bases: object

Interface class for autosubmit.

	
static archive(expid, noclean=True, uncompress=True, rocrate=False)

	Archives an experiment: call clean (if experiment is of version 3 or later), compress folder
to tar.gz and moves to year’s folder

	Parameters:

	
	expid (str) – experiment identifier

	noclean (bool) – flag telling it whether to clean the experiment or not.

	uncompress (bool) – flag telling it whether to decompress or not.

	rocrate (bool) – flag to enable RO-Crate

	Returns:

	True if the experiment has been successfully archived. False otherwise.

	Return type:

	bool

	
static as_conf_default_values(exp_id, hpc='local', minimal_configuration=False, git_repo='', git_branch='main', git_as_conf='')

	Replace default values in as_conf files
:param exp_id: experiment id
:param hpc: platform
:param minimal_configuration: minimal configuration
:param git_repo: path to project git repository
:param git_branch: main branch
:param git_as_conf: path to as_conf file in git repository
:return: None

	
static cat_log(exp_or_job_id: str, file: Union[None, str], mode: Union[None, str], inspect: bool = False) → bool

	The cat-log command allows users to view Autosubmit logs using the command-line.

It is possible to use autosubmit cat-log for Workflow and for Job logs. It decides
whether to show Workflow or Job logs based on the ID given. Shorter ID’s, such as
a000` are considered Workflow ID's, so it will display logs for that workflow. For
longer ID's, such as ``a000_20220401_fc0_1_GSV, the command will display logs for
that specific job.

Users can choose the log file using the FILE parameter, to display an error or
output log file, for instance.

Finally, the MODE parameter allows users to choose whether to display the complete
file contents (similar to the cat command) or to start tailing its output (akin to
tail -f).

	Args:
	exp_or_job_id: A workflow or job ID.
file: the type of the file to be printed (not the file path!).
mode: the mode to print the file (e.g. cat, tail).
inspect: when True it will use job files in tmp/ instead of tmp/LOG_a000/.

	
static change_status(final, final_status, job, save)

	Set job status to final

	Parameters:

	
	save –

	final –

	final_status –

	job –

	
static check(experiment_id, notransitive=False)

	Checks experiment configuration and warns about any detected error or inconsistency.

	Parameters:

	
	notransitive –

	experiment_id (str) – experiment identifier:

	
static check_wrapper_stored_status(as_conf, job_list)

	Check if the wrapper job has been submitted and the inner jobs are in the queue.
:param as_conf: a BasicConfig object
:param job_list: a JobList object
:return: JobList object updated

	
static check_wrappers(as_conf, job_list, platforms_to_test, expid)

	Check wrappers and inner jobs status also order the non-wrapped jobs to be submitted by active platforms
:param as_conf: a AutosubmitConfig object
:param job_list: a JobList object
:param platforms_to_test: a list of Platform
:param expid: a string with the experiment id
:return: non-wrapped jobs to check and a dictionary with the changes in the jobs status

	
static clean(expid, project, plot, stats)

	Clean experiment’s directory to save storage space.
It removes project directory and outdated plots or stats.

	Parameters:

	
	expid (str) – identifier of experiment to clean

	project (bool) – set True to delete project directory

	plot (bool) – set True to delete outdated plots

	stats (bool) – set True to delete outdated stats

	
static configure(advanced, database_path, database_filename, local_root_path, platforms_conf_path, jobs_conf_path, smtp_hostname, mail_from, machine, local)

	Configure several paths for autosubmit: database, local root and others. Can be configured at system,
user or local levels. Local level configuration precedes user level and user level precedes system
configuration.

	Parameters:

	
	advanced –

	database_path (str) – path to autosubmit database

	database_filename (str) – database filename

	local_root_path (str) – path to autosubmit’s experiments’ directory

	platforms_conf_path (str) – path to platforms conf file to be used as model for new experiments

	jobs_conf_path (str) – path to jobs conf file to be used as model for new experiments

	machine (bool) – True if this configuration has to be stored for all the machine users

	local (bool) – True if this configuration has to be stored in the local path

	mail_from (str) –

	smtp_hostname (str) –

	
static configure_dialog()

	Configure several paths for autosubmit interactively: database, local root and others.
Can be configured at system, user or local levels. Local level configuration precedes user level and user level
precedes system configuration.

	
static create(expid, noplot, hide, output='pdf', group_by=None, expand=[], expand_status=[], notransitive=False, check_wrappers=False, detail=False, profile=False, force=False)

	Creates job list for given experiment. Configuration files must be valid before executing this process.

	Parameters:

	
	detail –

	check_wrappers –

	notransitive –

	expand_status –

	expand –

	group_by –

	expid (str) – experiment identifier

	noplot (bool) – if True, method omits final plotting of the jobs list. Only needed on large experiments when
plotting time can be much larger than creation time.

	hide (bool) – hides plot window

	hide – hides plot window

	output (str) – plot’s file format. It can be pdf, png, ps or svg

	Returns:

	True if successful, False if not

	Return type:

	bool

	
static database_fix(expid)

	Database methods. Performs a sql dump of the database and restores it.

	Parameters:

	expid (str) – experiment identifier

	Returns:

	

	Return type:

	

	
static delete(expid, force)

	Deletes and experiment from database and experiment’s folder

	Parameters:

	
	expid (str) – identifier of the experiment to delete

	force (bool) – if True, does not ask for confirmation

	Returns:

	True if successful, False if not

	Return type:

	bool

	
static describe(input_experiment_list='*', get_from_user='')

	Show details for specified experiment

	Parameters:

	
	experiments_id (str) – experiments identifier:

	get_from_user (str) – user to get the experiments from

	Returns:

	str,str,str,str

	
static environ_init()

	Initialise AS environment.

	
property experiment_data

	Get the current voltage.

	
static expid(description, hpc='', copy_id='', dummy=False, minimal_configuration=False, git_repo='', git_branch='', git_as_conf='', operational=False, testcase=False, use_local_minimal=False)

	Creates a new experiment for given HPC
description: description of the experiment
hpc: HPC where the experiment will be executed
copy_id: if specified, experiment id to copy
dummy: if true, creates a dummy experiment
minimal_configuration: if true, creates a minimal configuration
git_repo: git repository to clone
git_branch: git branch to clone
git_as_conf: path to as_conf file in git repository
operational: if true, creates an operational experiment
local: Gets local minimal instead of git minimal

	
static generate_as_config(exp_id: str, dummy: bool = False, minimal_configuration: bool = False, local: bool = False, parameters: Optional[Dict[str, Union[Dict, List, str]]] = None) → None

	Retrieve the configuration from autosubmitconfigparser package.

	Parameters:

	
	exp_id – Experiment ID

	dummy – Whether the experiment is a dummy one or not.

	minimal_configuration – Whether the experiment is configured with minimal configuration or not.

	local – Whether the experiment project type is local or not.

	parameters – Optional list of parameters to be used when processing the configuration files.

	Returns:

	None

	
static generate_scripts_andor_wrappers(as_conf, job_list, jobs_filtered, packages_persistence, only_wrappers=False)

	
	Parameters:

	
	as_conf (AutosubmitConfig() Object) – Class that handles basic configuration parameters of Autosubmit.

	job_list (JobList() Object) – Representation of the jobs of the experiment, keeps the list of jobs inside.

	jobs_filtered (List() of Job Objects) – list of jobs that are relevant to the process.

	packages_persistence (JobPackagePersistence() Object) – Object that handles local db persistence.

	only_wrappers (Boolean) – True when coming from Autosubmit.create(). False when coming from Autosubmit.inspect(),

	Returns:

	Nothing

	Return type:

	

	
static get_historical_database(expid, job_list, as_conf)

	Get the historical database for the experiment
:param expid: a string with the experiment id
:param job_list: a JobList object
:param as_conf: a AutosubmitConfig object
:return: an experiment history object

	
static get_iteration_info(as_conf, job_list)

	Prints the current iteration information
:param as_conf: autosubmit configuration object
:param job_list: job list object
:return: common parameters for the iteration

	
static inspect(expid, lst, filter_chunks, filter_status, filter_section, notransitive=False, force=False, check_wrapper=False, quick=False)

	Generates cmd files experiment.

	Parameters:

	
	check_wrapper –

	force –

	notransitive –

	filter_section –

	filter_status –

	filter_chunks –

	lst –

	expid (str) – identifier of experiment to be run

	Returns:

	True if run to the end, False otherwise

	Return type:

	bool

	
static install()

	Creates a new database instance for autosubmit at the configured path

	
static migrate(experiment_id, offer, pickup, only_remote)

	Migrates experiment files from current to other user.
It takes mapping information for new user from config files.

	Parameters:

	
	experiment_id – experiment identifier:

	pickup –

	offer –

	only_remote –

	
static monitor(expid, file_format, lst, filter_chunks, filter_status, filter_section, hide, txt_only=False, group_by=None, expand='', expand_status=[], hide_groups=False, notransitive=False, check_wrapper=False, txt_logfiles=False, profile=False, detail=False)

	Plots workflow graph for a given experiment with status of each job coded by node color.
Plot is created in experiment’s plot folder with name <expid>_<date>_<time>.<file_format>

	Parameters:

	
	txt_logfiles –

	expid (str) – identifier of the experiment to plot

	file_format (str) – plot’s file format. It can be pdf, png, ps or svg

	lst (str) – list of jobs to change status

	filter_chunks (str) – chunks to change status

	filter_status (str) – current status of the jobs to change status

	filter_section (str) – sections to change status

	hide (bool) – hides plot window

	txt_only (bool) – workflow will only be written as text

	group_by (bool) – workflow will only be written as text

	expand (str) – Filtering of jobs for its visualization

	expand_status (str) – Filtering of jobs for its visualization

	hide_groups (bool) – Simplified workflow illustration by encapsulating the jobs.

	notransitive (bool) – workflow will only be written as text

	check_wrapper (bool) – Shows a preview of how the wrappers will look

	notransitive – Some dependencies will be omitted

	detail (bool) – better text format representation but more expensive

	
static parse_args()

	Parse arguments given to an executable and start execution of command given

	
static pkl_fix(expid)

	Tries to find a backup of the pkl file and restores it. Verifies that autosubmit is not running on this experiment.

	Parameters:

	expid (str) – experiment identifier

	Returns:

	

	Return type:

	

	
static prepare_run(expid, notransitive=False, start_time=None, start_after=None, run_only_members=None, recover=False)

	Prepare the run of the experiment.
:param expid: a string with the experiment id.
:param notransitive: a boolean to indicate for the experiment to not use transitive dependencies.
:param start_time: a string with the starting time of the experiment.
:param start_after: a string with the experiment id to start after.
:param run_only_members: a string with the members to run.
:param recover: a boolean to indicate if the experiment is recovering from a failure.
:return: a tuple

	
static process_historical_data_iteration(job_list, job_changes_tracker, expid)

	Process the historical data for the current iteration.
:param job_list: a JobList object.
:param job_changes_tracker: a dictionary with the changes in the job status.
:param expid: a string with the experiment id.
:return: an ExperimentHistory object.

	
static recovery(expid, noplot, save, all_jobs, hide, group_by=None, expand=[], expand_status=[], notransitive=False, no_recover_logs=False, detail=False, force=False)

	Method to check all active jobs. If COMPLETED file is found, job status will be changed to COMPLETED,
otherwise it will be set to WAITING. It will also update the jobs list.

	Parameters:

	
	detail –

	no_recover_logs –

	notransitive –

	expand_status –

	expand –

	group_by –

	noplot –

	expid (str) – identifier of the experiment to recover

	save (bool) – If true, recovery saves changes to the jobs list

	all_jobs (bool) – if True, it tries to get completed files for all jobs, not only active.

	hide (bool) – hides plot window

	force (bool) – Allows to restore the workflow even if there are running jobs

	
static refresh(expid, model_conf, jobs_conf)

	Refresh project folder for given experiment

	Parameters:

	
	model_conf (bool) –

	jobs_conf (bool) –

	expid (str) – experiment identifier

	
static report(expid, template_file_path='', show_all_parameters=False, folder_path='', placeholders=False)

	Show report for specified experiment
:param expid: experiment identifier
:type expid: str
:param template_file_path: path to template file
:type template_file_path: str
:param show_all_parameters: show all parameters
:type show_all_parameters: bool
:param folder_path: path to folder
:type folder_path: str
:param placeholders: show placeholders
:type placeholders: bool

	
static rerun_recovery(expid, job_list, rerun_list, as_conf)

	Method to check all active jobs. If COMPLETED file is found, job status will be changed to COMPLETED,
otherwise it will be set to WAITING. It will also update the jobs list.

	Parameters:

	
	expid (str) – identifier of the experiment to recover

	job_list (JobList) – job list to update

	rerun_list (list) – list of jobs to rerun

	as_conf (AutosubmitConfig) – AutosubmitConfig object

	Returns:

	

	
static rocrate(expid, path: Path)

	Produces an RO-Crate archive for an Autosubmit experiment.

	Parameters:

	
	expid (str) – experiment ID

	path (Path) – path to save the RO-Crate in

	Returns:

	True if successful, False otherwise

	Return type:

	bool

	
static run_experiment(expid, notransitive=False, start_time=None, start_after=None, run_only_members=None, profile=False)

	Runs and experiment (submitting all the jobs properly and repeating its execution in case of failure).
:param expid: the experiment id
:param notransitive: if True, the transitive closure of the graph is not computed
:param start_time: the time at which the experiment should start
:param start_after: the expid after which the experiment should start
:param run_only_members: the members to run
:param profile: if True, the function will be profiled
:return: None

	
static set_status(expid, noplot, save, final, filter_list, filter_chunks, filter_status, filter_section, filter_type_chunk, filter_type_chunk_split, hide, group_by=None, expand=[], expand_status=[], notransitive=False, check_wrapper=False, detail=False)

	Set status of jobs
:param expid: experiment id
:param noplot: do not plot
:param save: save
:param final: final status
:param filter_list: list of jobs
:param filter_chunks: filter chunks
:param filter_status: filter status
:param filter_section: filter section
:param filter_type_chunk: filter type chunk
:param filter_chunk_split: filter chunk split
:param hide: hide
:param group_by: group by
:param expand: expand
:param expand_status: expand status
:param notransitive: notransitive
:param check_wrapper: check wrapper
:param detail: detail
:return:

	
static statistics(expid, filter_type, filter_period, file_format, hide, notransitive=False)

	Plots statistics graph for a given experiment.
Plot is created in experiment’s plot folder with name <expid>_<date>_<time>.<file_format>

	Parameters:

	
	expid (str) – identifier of the experiment to plot

	filter_type – type of the jobs to plot

	filter_period – period to plot

	file_format (str) – plot’s file format. It can be pdf, png, ps or svg

	hide (bool) – hides plot window

	notransitive – Reduces workflow linkage complexity

	
static submit_ready_jobs(as_conf: AutosubmitConfig, job_list: JobList, platforms_to_test: Set[Platform], packages_persistence: JobPackagePersistence, inspect: bool = False, only_wrappers: bool = False, hold: bool = False) → bool

	Gets READY jobs and send them to the platforms if there is available space on the queues

	Parameters:

	
	hold –

	as_conf (AutosubmitConfig object) – autosubmit config object

	job_list (JobList object) – job list to check

	platforms_to_test (set of Platform Objects, e.g. SgePlatform(), LsfPlatform().) – platforms used

	packages_persistence (JobPackagePersistence object) – Handles database per experiment.

	inspect (Boolean) – True if coming from generate_scripts_andor_wrappers().

	only_wrappers (Boolean) – True if it comes from create -cw, False if it comes from inspect -cw.

	Returns:

	True if at least one job was submitted, False otherwise

	Return type:

	Boolean

	
static test(expid, chunks, member=None, start_date=None, hpc=None, branch=None)

	Method to conduct a test for a given experiment. It creates a new experiment for a given experiment with a
given number of chunks with a random start date and a random member to be run on a random HPC.

	Parameters:

	
	expid (str) – experiment identifier

	chunks (int) – number of chunks to be run by the experiment

	member (str) – member to be used by the test. If None, it uses a random one from which are defined on
the experiment.

	start_date (str) – start date to be used by the test. If None, it uses a random one from which are defined on
the experiment.

	hpc (str) – HPC to be used by the test. If None, it uses a random one from which are defined on
the experiment.

	branch (str) – branch or revision to be used by the test. If None, it uses configured branch.

	Returns:

	True if test was successful, False otherwise

	Return type:

	bool

	
static testcase(description, chunks=None, member=None, start_date=None, hpc=None, copy_id=None, minimal_configuration=False, git_repo=None, git_branch=None, git_as_conf=None, use_local_minimal=False)

	Method to conduct a test for a given experiment. It creates a new experiment for a given experiment with a
given number of chunks with a random start date and a random member to be run on a random HPC.
:param description: description of the experiment
:type description: str
:param chunks: number of chunks to be run by the experiment
:type chunks: int
:param member: member to be used by the test. If None, a random member will be chosen
:type member: str
:param start_date: start date of the experiment. If None, a random start date will be chosen
:type start_date: str
:param hpc: HPC to be used by the test. If None, a random HPC will be chosen
:type hpc: str
:param copy_id: copy id to be used by the test. If None, a random copy id will be chosen
:type copy_id: str
:param minimal_configuration: if True, the experiment will be run with a minimal configuration
:type minimal_configuration: bool
:param git_repo: git repository to be used by the test. If None, a random git repository will be chosen
:type git_repo: str
:param git_branch: git branch to be used by the test. If None, a random git branch will be chosen
:type git_branch: str
:param git_as_conf: git autosubmit configuration to be used by the test. If None, a random git autosubmit configuration will be chosen
:type git_as_conf: str
:param use_local_minimal: if True, the experiment will be run with a local minimal configuration
:type use_local_minimal: bool
:return: experiment identifier
:rtype: str

	
static unarchive(experiment_id, uncompressed=True, rocrate=False)

	Unarchives an experiment: uncompress folder from tar.gz and moves to experiment root folder

	Parameters:

	
	experiment_id (str) – experiment identifier

	uncompressed (bool) – if True, the tar file is uncompressed

	rocrate (bool) – flag to enable RO-Crate

	
static update_version(expid)

	Refresh experiment version with the current autosubmit version
:param expid: experiment identifier
:type expid: str

	
class autosubmit.autosubmit.MyParser(prog=None, usage=None, description=None, epilog=None, parents=[], formatter_class=<class 'argparse.HelpFormatter'>, prefix_chars='-', fromfile_prefix_chars=None, argument_default=None, conflict_handler='error', add_help=True, allow_abbrev=True, exit_on_error=True)

	Bases: ArgumentParser

	
add_argument(dest, ..., name=value, ...)

	
add_argument(option_string, option_string, ..., name=value, ...) → None

	

	
error(message: string)

	Prints a usage message incorporating the message to stderr and
exits.

If you override this in a subclass, it should not return – it
should either exit or raise an exception.

	
autosubmit.autosubmit.signal_handler(signal_received, frame)

	Used to handle interrupt signals, allowing autosubmit to clean before exit

	Parameters:

	
	signal_received –

	frame –

	
autosubmit.autosubmit.signal_handler_create(signal_received, frame)

	Used to handle KeyboardInterrupt signals while the create method is being executed

	Parameters:

	
	signal_received –

	frame –

autosubmit.config

autosubmitconfigparser.config.basicConfig

	
class autosubmitconfigparser.config.basicconfig.BasicConfig

	Bases: object

Class to manage configuration for Autosubmit path, database and default values for new experiments

	
static read()

	Reads configuration from .autosubmitrc files, first from /etc., then for user
directory and last for current path.

autosubmitconfigparser.config.config_common

	
class autosubmitconfigparser.config.configcommon.AutosubmitConfig(expid, basic_config=<class 'autosubmitconfigparser.config.basicconfig.BasicConfig'>, parser_factory=<autosubmitconfigparser.config.yamlparser.YAMLParserFactory object>)

	Bases: object

Class to handle experiment configuration coming from file or database

	Parameters:

	expid (str) – experiment identifier

	
check_autosubmit_conf(no_log=False)

	Checks experiment’s autosubmit configuration file.
:param refresh: True if the function is called during the refresh of the program
:type refresh: bool
:param no_log: True if the function is called during describe
:type no_log: bool
:return: True if everything is correct, False if it founds any error
:rtype: bool

	
check_conf_files(running_time=False, force_load=True, no_log=False)

	Checks configuration files (autosubmit, experiment jobs and platforms), looking for invalid values, missing
required options. Print results in log
:param running_time: True if the function is called during the execution of the program
:type running_time: bool
:param force_load: True if the function is called during the first load of the program
:type force_load: bool
:param refresh: True if the function is called during the refresh of the program
:type refresh: bool
:param no_log: True if the function is called during describe
:type no_log: bool
:return: True if everything is correct, False if it finds any error
:rtype: bool

	
check_dict_keys_type(parameters)

	Check if keys are plain into 1 dimension, checks for 33% of dict to ensure it.
:param parameters: experiment parameters
:return:

	
check_expdef_conf(no_log=False)

	Checks experiment’s experiment configuration file.
:param refresh: if True, it doesn’t check the mandatory parameters
:type refresh: bool
:param no_log: if True, it doesn’t print any log message
:type no_log: bool
:return: True if everything is correct, False if it founds any error
:rtype: bool

	
check_jobs_conf(no_log=False)

	Checks experiment’s jobs configuration file.
:param no_log: if True, it doesn’t print any log message
:type no_log: bool
:return: True if everything is correct, False if it founds any error
:rtype: bool

	
check_platforms_conf(no_log=False)

	Checks experiment’s platforms configuration file.

	
check_wrapper_conf(wrappers={}, no_log=False)

	Checks wrapper config file

	Parameters:

	
	wrappers –

	no_log –

	Returns:

	

	
clean_dynamic_variables(pattern, in_the_end=False)

	Clean dynamic variables
:param pattern:
:param in_the_end:
:return:

	
convert_list_to_string(data)

	Convert a list to a string

	
deep_add_missing_starter_conf(experiment_data, starter_conf)

	Add the missing keys from starter_conf to experiment_data
:param experiment_data:
:param starter_conf:
:return:

	
deep_normalize(data)

	normalize a nested dictionary or similar mapping to uppercase.
Modify source in place.

	
deep_parameters_export(data)

	Export all variables of this experiment.
Resultant format will be Section.{subsections1…subsectionN} = Value.
In other words, it plain the dictionary into one level

	
deep_read_loops(data, for_keys=[], long_key='')

	Update a nested dictionary or similar mapping.
Modify source in place.

	
deep_update(unified_config, new_dict)

	Update a nested dictionary or similar mapping.
Modify source in place.

	
detailed_deep_diff(current_data, last_run_data, level=0)

	Returns a dictionary with for each key, the difference between the current configuration and the last_run_data
:param current_data: dictionary with the current data
:param last_run_data: dictionary with the last_run_data data
:return: differences: dictionary

	
file_modified(file, prev_mod_time)

	Function to check if a file has been modified.
:param file: path
:return: bool,new_time

	
get_chunk_ini(default=1)

	Returns the first chunk from where the experiment will start

	Parameters:

	default –

	Returns:

	initial chunk

	Return type:

	int

	
get_chunk_size(default=1)

	Chunk Size as defined in the expdef file.

	Returns:

	Chunksize, 1 as default.

	Return type:

	int

	
get_chunk_size_unit()

	Unit for the chunk length

	Returns:

	Unit for the chunk length Options: {hour, day, month, year}

	Return type:

	str

	
get_communications_library()

	Returns the communications library from autosubmit’s config file. Paramiko by default.

	Returns:

	communications library

	Return type:

	str

	
get_copy_remote_logs()

	Returns if the user has enabled the logs local copy from autosubmit’s config file

	Returns:

	if logs local copy

	Return type:

	str

	
get_current_host(section)

	Returns the user to be changed from platform config file.

	Returns:

	migrate user to

	Return type:

	str

	
get_current_project(section)

	Returns the project to be changed from platform config file.

	Returns:

	migrate user to

	Return type:

	str

	
get_current_user(section)

	Returns the user to be changed from platform config file.

	Returns:

	migrate user to

	Return type:

	str

	
get_custom_directives(section)

	Gets custom directives needed for the given job type
:param section: job type
:type section: str
:return: custom directives needed
:rtype: str

	
get_date_list()

	Returns startdates list from experiment’s config file

	Returns:

	experiment’s startdates

	Return type:

	list

	
get_default_job_type()

	Returns the default job type from experiment’s config file

	Returns:

	default type such as bash, python, r…

	Return type:

	str

	
get_delay_retry_time()

	Returns delay time from autosubmit’s config file

	Returns:

	safety sleep time

	Return type:

	int

	
get_dependencies(section='None')

	Returns dependencies list from jobs config file

	Returns:

	experiment’s members

	Return type:

	list

	
get_disable_recovery_threads(section)

	Returns FALSE/TRUE
:return: recovery_threads_option
:rtype: str

	
get_export(section)

	Gets command line for being submitted with
:param section: job type
:type section: str
:return: wallclock time
:rtype: str

	
get_extensible_wallclock(wrapper={})

	Gets extend_wallclock for the given wrapper

	Parameters:

	wrapper (dict) – wrapper

	Returns:

	extend_wallclock

	Return type:

	int

	
get_fetch_single_branch()

	Returns fetch single branch from experiment’s config file
Default is -single-branch
:return: fetch_single_branch(Y/N)
:rtype: str

	
get_file_jobs_conf()

	Returns path to project config file from experiment config file

	Returns:

	path to project config file

	Return type:

	str

	
get_file_project_conf()

	Returns path to project config file from experiment config file

	Returns:

	path to project config file

	Return type:

	str

	
get_full_config_as_json()

	Return config as json object

	
get_git_project_branch()

	Returns git branch from experiment’s config file

	Returns:

	git branch

	Return type:

	str

	
get_git_project_commit()

	Returns git commit from experiment’s config file

	Returns:

	git commit

	Return type:

	str

	
get_git_project_origin()

	Returns git origin from experiment config file

	Returns:

	git origin

	Return type:

	str

	
get_git_remote_project_root()

	Returns remote machine ROOT PATH

	Returns:

	git commit

	Return type:

	str

	
get_local_project_path()

	Gets path to origin for local project

	Returns:

	path to local project

	Return type:

	str

	
get_mails_to()

	Returns the address where notifications will be sent from autosubmit’s config file

	Returns:

	mail address

	Return type:

	[str]

	
get_max_processors()

	Returns max processors from autosubmit’s config file

	Return type:

	str

	
get_max_waiting_jobs()

	Returns max number of waiting jobs from autosubmit’s config file

	Returns:

	main platforms

	Return type:

	int

	
get_max_wallclock()

	Returns max wallclock

	Return type:

	str

	
get_max_wrapped_jobs(wrapper={})

	Returns the maximum number of jobs that can be wrapped together as configured in autosubmit’s config file

	Returns:

	maximum number of jobs (or total jobs)

	Return type:

	int

	
get_max_wrapped_jobs_horizontal(wrapper={})

	Returns the maximum number of jobs that can be wrapped together as configured in autosubmit’s config file

	Returns:

	maximum number of jobs (or total jobs)

	Return type:

	int

	
get_max_wrapped_jobs_vertical(wrapper={})

	Returns the maximum number of jobs that can be wrapped together as configured in autosubmit’s config file

	Returns:

	maximum number of jobs (or total jobs)

	Return type:

	int

	
get_member_list(run_only=False)

	Returns members list from experiment’s config file

	Returns:

	experiment’s members

	Return type:

	list

	
get_memory(section)

	Gets memory needed for the given job type
:param section: job type
:type section: str
:return: memory needed
:rtype: str

	
get_memory_per_task(section)

	Gets memory per task needed for the given job type
:param section: job type
:type section: str
:return: memory per task needed
:rtype: str

	
get_migrate_duplicate(section)

	Returns the user to change to from platform config file.

	Returns:

	migrate user to

	Return type:

	str

	
get_migrate_host_to(section)

	Returns the host to change to from platform config file.

	Returns:

	host_to

	Return type:

	str

	
get_migrate_project_to(section)

	Returns the project to change to from platform config file.

	Returns:

	migrate project to

	Return type:

	str

	
get_migrate_user_to(section)

	Returns the user to change to from platform config file.

	Returns:

	migrate user to

	Return type:

	str

	
get_min_wrapped_jobs(wrapper={})

	
Returns the minium number of jobs that can be wrapped together as configured in autosubmit’s config file

	Returns:

	minim number of jobs (or total jobs)

	Return type:

	int

	
get_min_wrapped_jobs_horizontal(wrapper={})

	Returns the maximum number of jobs that can be wrapped together as configured in autosubmit’s config file

	Returns:

	maximum number of jobs (or total jobs)

	Return type:

	int

	
get_min_wrapped_jobs_vertical(wrapper={})

	Returns the maximum number of jobs that can be wrapped together as configured in autosubmit’s config file

	Returns:

	maximum number of jobs (or total jobs)

	Return type:

	int

	
get_notifications()

	Returns if the user has enabled the notifications from autosubmit’s config file

	Returns:

	if notifications

	Return type:

	string

	
get_notifications_crash()

	Returns if the user has enabled the notifications from autosubmit’s config file

	Returns:

	if notifications

	Return type:

	string

	
get_num_chunks()

	Returns number of chunks to run for each member

	Returns:

	number of chunks

	Return type:

	int

	
get_output_type()

	Returns default output type, pdf if none

	Returns:

	output type

	Return type:

	string

	
get_parse_two_step_start()

	Returns two-step start jobs

	Returns:

	jobs_list

	Return type:

	str

	
static get_parser(parser_factory, file_path)

	Gets parser for given file

	Parameters:

	
	parser_factory –

	file_path (Path) – path to file to be parsed

	Returns:

	parser

	Return type:

	YAMLParser

	
get_platform()

	Returns main platforms from experiment’s config file

	Returns:

	main platforms

	Return type:

	str

	
get_processors(section)

	Gets processors needed for the given job type
:param section: job type
:type section: str
:return: wallclock time
:rtype: str

	
get_project_destination()

	Returns git commit from experiment’s config file

	Returns:

	git commit

	Return type:

	str

	
get_project_dir()

	Returns experiment’s project directory

	Returns:

	experiment’s project directory

	Return type:

	str

	
get_project_submodules_depth()

	Returns the max depth of submodule at the moment of cloning
Default is -1 (no limit)
:return: depth
:rtype: list

	
get_project_type()

	Returns project type from experiment config file

	Returns:

	project type

	Return type:

	str

	
get_remote_dependencies()

	Returns if the user has enabled the PRESUBMISSION configuration parameter from autosubmit’s config file

	Returns:

	if remote dependencies

	Return type:

	string

	
get_rerun()

	Returns startdates list from experiment’s config file

	Returns:

	rerurn value

	Return type:

	bool

	
get_rerun_jobs()

	Returns rerun jobs

	Returns:

	jobs_list

	Return type:

	str

	
get_retrials()

	Returns max number of retrials for job from autosubmit’s config file

	Returns:

	safety sleep time

	Return type:

	int

	
get_safetysleeptime()

	Returns safety sleep time from autosubmit’s config file

	Returns:

	safety sleep time

	Return type:

	int

	
get_scratch_free_space(section)

	Gets scratch free space needed for the given job type
:param section: job type
:type section: str
:return: percentage of scratch free space needed
:rtype: int

	
get_section(section, d_value='', must_exists=False)

	Gets any section if it exists within the dictionary, else returns None or error if must exist.
:param section: section to get
:type section: list
:param d_value: default value to return if section does not exist
:type d_value: str
:param must_exists: if true, error is raised if section does not exist
:type must_exists: bool
:return: section value
:rtype: str

	
get_storage_type()

	Returns the storage system from autosubmit’s config file. Pkl by default.

	Returns:

	communications library

	Return type:

	str

	
get_submodules_list() → Union[List[str], bool]

	Returns submodules list from experiment’s config file.
Default is –recursive.
Can be disabled by setting the configuration key to False.
:return: submodules to load
:rtype: Union[List[str], bool]

	
get_svn_project_revision()

	Get revision for subversion project

	Returns:

	revision for subversion project

	Return type:

	str

	
get_svn_project_url()

	Gets subversion project url

	Returns:

	subversion project url

	Return type:

	str

	
get_synchronize(section)

	Gets wallclock for the given job type
:param section: job type
:type section: str
:return: wallclock time
:rtype: str

	
get_tasks(section)

	Gets tasks needed for the given job type
:param section: job type
:type section: str
:return: tasks (processes) per host
:rtype: str

	
get_threads(section)

	Gets threads needed for the given job type
:param section: job type
:type section: str
:return: threads needed
:rtype: str

	
get_total_jobs()

	Returns max number of running jobs from autosubmit’s config file

	Returns:

	max number of running jobs

	Return type:

	int

	
get_version()

	Returns version number of the current experiment from autosubmit’s config file

	Returns:

	version

	Return type:

	str

	
get_wchunkinc(section)

	Gets the chunk increase to wallclock
:param section: job type
:type section: str
:return: wallclock increase per chunk
:rtype: str

	
get_wrapper_check_time()

	Returns time to check the status of jobs in the wrapper

	Returns:

	wrapper check time

	Return type:

	int

	
get_wrapper_export(wrapper={})

	Returns modules variable from wrapper

	Returns:

	string

	Return type:

	string

	
get_wrapper_jobs(wrapper=None)

	Returns the jobs that should be wrapped, configured in the autosubmit’s config

	Returns:

	expression (or none)

	Return type:

	string

	
get_wrapper_machinefiles(wrapper={})

	Returns the strategy for creating the machinefiles in wrapper jobs

	Returns:

	machinefiles function to use

	Return type:

	string

	
get_wrapper_method(wrapper={})

	Returns the method of make the wrapper

	Returns:

	method

	Return type:

	string

	
get_wrapper_partition(wrapper={})

	Returns the wrapper queue if not defined, will be the one of the first job wrapped

	Returns:

	expression (or none)

	Return type:

	string

	
get_wrapper_policy(wrapper={})

	Returns what kind of policy (flexible, strict, mixed) the user has configured in the autosubmit’s config

	Returns:

	wrapper type (or none)

	Return type:

	string

	
get_wrapper_queue(wrapper={})

	Returns the wrapper queue if not defined, will be the one of the first job wrapped

	Returns:

	expression (or none)

	Return type:

	string

	
get_wrapper_retrials(wrapper={})

	Returns max number of retrials for job from autosubmit’s config file

	Returns:

	safety sleep time

	Return type:

	int

	
get_wrapper_type(wrapper={})

	Returns what kind of wrapper (VERTICAL, MIXED-VERTICAL, HORIZONTAL, HYBRID, MULTI NONE) the user has configured in the autosubmit’s config

	Returns:

	wrapper type (or none)

	Return type:

	string

	
get_wrappers()

	Returns the jobs that should be wrapped, configured in the autosubmit’s config

	Returns:

	expression

	Return type:

	dict

	
get_x11(section)

	Active X11 for this section
:param section: job type
:type section: str
:return: false/true
:rtype: str

	
get_x11_jobs()

	Returns the jobs that should support x11, configured in the autosubmit’s config

	Returns:

	expression (or none)

	Return type:

	string

	
get_yaml_filenames_to_load(yaml_folder, ignore_minimal=False)

	Get all yaml files in a folder and return a list with the filenames
:param yaml_folder: folder to search for yaml files
:param ignore_minimal: ignore minimal files
:return: list of filenames

	
load_common_parameters(parameters)

	Loads common parameters not specific to a job neither a platform
:param parameters:
:return:

	
load_config_file(current_folder_data, yaml_file)

	Load a config file and parse it
:param current_folder_data: current folder data
:param yaml_file: yaml file to load
:return: unified config file

	
load_config_folder(current_data, yaml_folder, ignore_minimal=False)

	Load a config folder and return pre and post config
:param current_data: current data to be updated
:param yaml_folder: folder to load config
:param ignore_minimal: ignore minimal config files
:return: pre and post config

	
load_custom_config(current_data, filenames_to_load)

	Loads custom config files
:param current_data: dict with current data
:param filenames_to_load: list of filenames to load
:return: current_data_pre,current_data_post with unified data

	
load_custom_config_section(current_data, filenames_to_load)

	Loads a section (PRE or POST), simple str are also PRE data of the custom config files
:param current_data: data until now
:param filenames_to_load: files to load in this section
:return:

	
load_parameters()

	Load all experiment data
:return: a dictionary containing tuples [parameter_name, parameter_value]
:rtype: dict

	
load_platform_parameters()

	Load parameters from platform config files.

	Returns:

	a dictionary containing tuples [parameter_name, parameter_value]

	Return type:

	dict

	
load_section_parameters(job_list, as_conf, submitter)

	Load parameters from job config files.

	Returns:

	a dictionary containing tuples [parameter_name, parameter_value]

	Return type:

	dict

	
normalize_parameters_keys(parameters, default_parameters={})

	Normalize the parameters keys to be exportable in the templates case-insensitive.
:param parameters: dictionary containing the parameters
:param default_parameters: dictionary containing the default parameters, they must remain in lower-case
:return: upper-case parameters

	
normalize_variables(data)

	Apply some memory internal variables to normalize it format. (right now only dependencies)

	
parse_data_loops(experiment_data, data_loops)

	This function, looks for the FOR keyword, to generates N amount of subsections of the same section.
Looks for the “NAME” keyword, inside this FOR keyword to determine the name of the new sections
Experiment_data is the dictionary that contains all the sections, a subsection could be located at the root but also in a nested section
:param experiment_data: dictionary with all the sections
:param data_loops: list of lists with the path to the section that contains the FOR keyword
:return: Original experiment_data with the sections in the data_loops updated changing the FOR by multiple new sections

	
parse_githooks()

	Parse githooks section in configuration file

	Returns:

	dictionary with githooks configuration

	Return type:

	dict

	
static parse_placeholders(content, parameters)

	Parse placeholders in content

	Parameters:

	
	content (str) – content to be parsed

	parameters (dict) – parameters to be used in parsing

	Returns:

	parsed content

	Return type:

	str

	
quick_deep_diff(current_data, last_run_data, changed=False)

	Returns if there is any difference between the current configuration and the stored one
:param last_run_data: dictionary with the stored data
:return: changed: boolean, True if the configuration has changed

	
reload(force_load=False, only_experiment_data=False, save=False)

	Reloads the configuration files
:param force_load: If True, reloads all the files, if False, reloads only the modified files

	
save()

	Saves the experiment data into the experiment_folder/conf/metadata folder as a yaml file
:return: True if the data has changed, False otherwise

	
set_expid(exp_id)

	Set experiment identifier in autosubmit and experiment config files

	Parameters:

	exp_id (str) – experiment identifier to store

	
set_git_project_commit(as_conf)

	Function to register in the configuration the commit SHA of the git project version.
:param as_conf: Configuration class for exteriment
:type as_conf: AutosubmitConfig

	
set_new_host(section, new_host)

	Sets new host for given platform
:param new_host:
:param section: platform name
:type: str

	
set_new_project(section, new_project)

	Sets new project for given platform
:param new_project:
:param section: platform name
:type: str

	
set_new_user(section, new_user)

	Sets new user for given platform
:param new_user:
:param section: platform name
:type: str

	
set_platform(hpc)

	Sets main platforms in experiment’s config file

	Parameters:

	hpc – main platforms

	Type:

	str

	
set_safetysleeptime(sleep_time)

	Sets autosubmit’s version in autosubmit’s config file

	Parameters:

	sleep_time (int) – value to set

	
set_version(autosubmit_version)

	Sets autosubmit’s version in autosubmit’s config file

	Parameters:

	autosubmit_version (str) – autosubmit’s version

	
substitute_dynamic_variables(parameters=None, max_deep=25, dict_keys_type=None, not_in_data='', in_the_end=False)

	Substitute dynamic variables in the experiment data
:parameter
:return:

	
unify_conf(current_data, new_data)

	Unifies all configuration files into a single dictionary.
:param current_data: dict with current configuration
:param new_data: dict with new configuration
:return: dict with new configuration taking priority over current configuration

autosubmit.database

Module containing functions to manage autosubmit’s database.

	
exception autosubmit.database.db_common.DbException(message)

	Exception class for database errors

	
autosubmit.database.db_common.check_db()

	Checks if database file exist

	Returns:

	None if exists, terminates program if not

	
autosubmit.database.db_common.check_experiment_exists(name, error_on_inexistence=True)

	Checks if exist an experiment with the given name. Anti-lock version.

	Parameters:

	
	error_on_inexistence (bool) – if True, adds an error log if experiment does not exist

	name (str) – Experiment name

	Returns:

	If experiment exists returns true, if not returns false

	Return type:

	bool

	
autosubmit.database.db_common.close_conn(conn, cursor)

	Commits changes and close connection to database

	Parameters:

	
	conn (sqlite3.Connection) – connection to close

	cursor (sqlite3.Cursor) – cursor to close

	
autosubmit.database.db_common.create_db(qry)

	Creates a new database for autosubmit

	Parameters:

	qry (str) – query to create the new database

	
autosubmit.database.db_common.delete_experiment(experiment_id)

	Removes experiment from database. Anti-lock version.

	Parameters:

	experiment_id (str) – experiment identifier

	Returns:

	True if delete is successful

	Return type:

	bool

	
autosubmit.database.db_common.get_autosubmit_version(expid)

	Get the minimum autosubmit version needed for the experiment. Anti-lock version.

	Parameters:

	expid (str) – Experiment name

	Returns:

	If experiment exists returns the autosubmit version for it, if not returns None

	Return type:

	str

	
autosubmit.database.db_common.last_name_used(test=False, operational=False)

	Gets last experiment identifier used. Anti-lock version.

	Parameters:

	
	test (bool) – flag for test experiments

	operational – flag for operational experiments

	Returns:

	last experiment identifier used, ‘empty’ if there is none

	Return type:

	str

	
autosubmit.database.db_common.open_conn(check_version=True)

	Opens a connection to database

	Parameters:

	check_version (bool) – If true, check if the database is compatible with this autosubmit version

	Returns:

	connection object, cursor object

	Return type:

	sqlite3.Connection, sqlite3.Cursor

	
autosubmit.database.db_common.save_experiment(name, description, version)

	Stores experiment in database. Anti-lock version.

	Parameters:

	
	version (str) –

	name (str) – experiment’s name

	description (str) – experiment’s description

	
autosubmit.database.db_common.update_experiment_descrip_version(name, description=None, version=None)

	Updates the experiment’s description and/or version. Anti-lock version.

	Parameters:

	
	name – experiment name (expid)

	description – experiment new description

	version – experiment autosubmit version

	Rtype name:

	str

	Rtype description:

	str

	Rtype version:

	str

	Returns:

	If description has been update, True; otherwise, False.

	Return type:

	bool

autosubmit.git

	
class autosubmit.git.autosubmit_git.AutosubmitGit(expid)

	Class to handle experiment git repository

	Parameters:

	expid (str) – experiment identifier

	
static check_commit(as_conf)

	Function to check uncommitted changes

	Parameters:

	as_conf (autosubmitconfigparser.config.AutosubmitConfig) – experiment configuration

	
static clean_git(as_conf)

	Function to clean space on BasicConfig.LOCAL_ROOT_DIR/git directory.

	Parameters:

	as_conf (autosubmitconfigparser.config.AutosubmitConfig) – experiment configuration

	
static clone_repository(as_conf, force, hpcarch)

	Clones a specified git repository on the project folder

	Parameters:

	
	as_conf (autosubmit.config.AutosubmitConfig) – experiment configuration

	force (bool) – if True, it will overwrite any existing clone

	hpcarch – current main platform

	Returns:

	True if clone was successful, False otherwise

autosubmit.job

Main module for Autosubmit. Only contains an interface class to all functionality implemented on Autosubmit

	
class autosubmit.job.job.Job(name, job_id, status, priority)

	Class to handle all the tasks with Jobs at HPC.

A job is created by default with a name, a jobid, a status and a type.
It can have children and parents. The inheritance reflects the dependency between jobs.
If Job2 must wait until Job1 is completed then Job2 is a child of Job1.
Inversely Job1 is a parent of Job2

	
add_children(children)

	Add children for the job. It also adds current job as a parent for all the new children

	Parameters:

	children (list of Job objects) – job’s children to add

	
add_edge_info(parent, special_conditions)

	Adds edge information to the job

	Parameters:

	
	parent (Job) – parent job

	special_conditions (dict) – special variables

	
add_parent(*parents)

	Add parents for the job. It also adds current job as a child for all the new parents

	Parameters:

	parents (Job) – job’s parents to add

	
calendar_chunk(parameters)

	Calendar for chunks

	Parameters:

	parameters –

	Returns:

	

	
calendar_split(as_conf, parameters)

	Calendar for splits
:param parameters:
:return:

	
check_completion(default_status=-1, over_wallclock=False)

	Check the presence of COMPLETED file.
Change status to COMPLETED if COMPLETED file exists and to FAILED otherwise.
:param over_wallclock:
:param default_status: status to set if job is not completed. By default, is FAILED
:type default_status: Status

	
check_end_time(fail_count=-1)

	Returns end time from stat file

	Returns:

	date and time

	Return type:

	str

	
check_retrials_end_time()

	Returns list of end datetime for retrials from total stats file

	Returns:

	date and time

	Return type:

	list[int]

	
check_retrials_start_time()

	Returns list of start datetime for retrials from total stats file

	Returns:

	date and time

	Return type:

	list[int]

	
check_running_after(date_limit)

	Checks if the job was running after the given date
:param date_limit: reference date
:type date_limit: datetime.datetime
:return: True if job was running after the given date, false otherwise
:rtype: bool

	
check_script(as_conf, parameters, show_logs='false')

	Checks if script is well-formed

	Parameters:

	
	parameters (dict) – script parameters

	as_conf (AutosubmitConfig) – configuration file

	show_logs (Bool) – Display output

	Returns:

	true if not problem has been detected, false otherwise

	Return type:

	bool

	
check_start_time(fail_count=-1)

	Returns job’s start time

	Returns:

	start time

	Return type:

	str

	
check_started_after(date_limit)

	Checks if the job started after the given date
:param date_limit: reference date
:type date_limit: datetime.datetime
:return: True if job started after the given date, false otherwise
:rtype: bool

	
property checkpoint

	Generates a checkpoint step for this job based on job.type.

	
property children

	Returns a list containing all children of the job

	Returns:

	child jobs

	Return type:

	set

	
property children_names_str

	Comma separated list of children’s names

	
property chunk

	Current chunk.

	
create_script(as_conf)

	Creates script file to be run for the job

	Parameters:

	as_conf (AutosubmitConfig) – configuration object

	Returns:

	script’s filename

	Return type:

	str

	
property custom_directives

	List of custom directives.

	
property delay

	Current delay.

	
property delay_retrials

	TODO

	
delete_child(child)

	Removes a child from the job

	Parameters:

	child (Job) – child to remove

	
delete_parent(parent)

	Remove a parent from the job

	Parameters:

	parent (Job) – parent to remove

	
property dependencies

	Current job dependencies.

	
property export

	TODO.

	
property fail_count

	Number of failed attempts to run this job.

	
property frequency

	TODO.

	
get_checkpoint_files()

	Check if there is a file on the remote host that contains the checkpoint

	
get_last_retrials() → List[Union[datetime, str]]

	Returns the retrials of a job, including the last COMPLETED run. The selection stops, and does not include, when the previous COMPLETED job is located or the list of registers is exhausted.

	Returns:

	list of dates of retrial [submit, start, finish] in datetime format

	Return type:

	list of list

	
get_new_remotelog_name(count=-1)

	Checks if remote log file exists on remote host
if it exists, remote_log variable is updated
:param

	
has_children()

	Returns true if job has any children, else return false

	Returns:

	true if job has any children, otherwise return false

	Return type:

	bool

	
has_parents()

	Returns true if job has any parents, else return false

	Returns:

	true if job has any parent, otherwise return false

	Return type:

	bool

	
property hyperthreading

	Detects if hyperthreading is enabled or not.

	
inc_fail_count()

	Increments fail count

	
static is_a_completed_retrial(fields)

	Returns true only if there are 4 fields: submit start finish status, and status equals COMPLETED.

	
is_ancestor(job)

	Check if the given job is an ancestor
:param job: job to be checked if is an ancestor
:return: True if job is an ancestor, false otherwise
:rtype bool

	
is_over_wallclock(start_time, wallclock)

	Check if the job is over the wallclock time, it is an alternative method to avoid platform issues
:param start_time:
:param wallclock:
:return:

	
is_parent(job)

	Check if the given job is a parent
:param job: job to be checked if is a parent
:return: True if job is a parent, false otherwise
:rtype bool

	
property long_name

	Job’s long name. If not set, returns name

	Returns:

	long name

	Return type:

	str

	
property member

	Current member.

	
property memory

	Memory requested for the job.

	
property memory_per_task

	Memory requested per task.

	
property name

	Current job full name.

	
property nodes

	Number of nodes that the job will use.

	
property packed

	TODO

	
property parents

	Returns parent jobs list

	Returns:

	parent jobs

	Return type:

	set

	
property partition

	Returns the queue to be used by the job. Chooses between serial and parallel platforms

:return HPCPlatform object for the job to use
:rtype: HPCPlatform

	
property platform

	Returns the platform to be used by the job. Chooses between serial and parallel platforms

:return HPCPlatform object for the job to use
:rtype: HPCPlatform

	
process_scheduler_parameters(as_conf, parameters, job_platform, chunk)

	Parsers yaml data stored in the dictionary
and calculates the components of the heterogeneous job if any
:return:

	
property processors

	Number of processors that the job will use.

	
property processors_per_node

	Number of processors per node that the job can use.

	
property queue

	Returns the queue to be used by the job. Chooses between serial and parallel platforms.

:return HPCPlatform object for the job to use
:rtype: HPCPlatform

	
read_header_tailer_script(script_path: str, as_conf: AutosubmitConfig, is_header: bool)

	Opens and reads a script. If it is not a BASH script it will fail :(

Will strip away the line with the hash bang (#!)

	Parameters:

	
	script_path – relative to the experiment directory path to the script

	as_conf – Autosubmit configuration file

	is_header – boolean indicating if it is header extended script

	
remove_redundant_parents()

	Checks if a parent is also an ancestor, if true, removes the link in both directions.
Useful to remove redundant dependencies.

	
property retrials

	Max amount of retrials to run this job.

	
retrieve_logfiles(platform, raise_error=False)

	Retrieves log files from remote host meant to be used inside a process.
:param platform: platform that is calling the function, already connected.
:param raise_error: boolean to raise an error if the logs are not retrieved
:return:

	
property scratch_free_space

	Percentage of free space required on the scratch.

	
property sdate

	Current start date.

	
property section

	Type of the job, as given on job configuration file.

	
property split

	Current split.

	
property splits

	Max number of splits.

	
property status_str

	String representation of the current status

	
property synchronize

	TODO.

	
property tasks

	Number of tasks that the job will use.

	
property threads

	Number of threads that the job will use.

	
property total_processors

	Number of processors requested by job.
Reduces ‘:’ separated format if necessary.

	
update_content(as_conf)

	Create the script content to be run for the job

	Parameters:

	as_conf (config) – config

	Returns:

	script code

	Return type:

	str

	
update_job_variables_final_values(parameters)

	Jobs variables final values based on parameters dict instead of as_conf
This function is called to handle %CURRENT_% placeholders as they are filled up dynamically for each job

	
update_parameters(as_conf, parameters, default_parameters={'M': '%M%', 'M_': '%M_%', 'Y': '%Y%', 'Y_': '%Y_%', 'd': '%d%', 'd_': '%d_%', 'm': '%m%', 'm_': '%m_%'})

	Refresh parameters value

	Parameters:

	
	default_parameters (dict) –

	as_conf (AutosubmitConfig) –

	parameters (dict) –

	
update_status(as_conf, failed_file=False)

	Updates job status, checking COMPLETED file if needed

	Parameters:

	
	as_conf –

	failed_file – boolean, if True, checks if the job failed

	Returns:

	

	
property wallclock

	Duration for which nodes used by job will remain allocated.

	
write_end_time(completed, enable_vertical_write=False, count=-1)

	Writes ends date and time to TOTAL_STATS file
:param completed: True if job was completed successfully, False otherwise
:type completed: bool

	
write_start_time(enable_vertical_write=False, from_stat_file=False, count=-1)

	Writes start date and time to TOTAL_STATS file
:return: True if successful, False otherwise
:rtype: bool

	
write_submit_time()

	Writes submit date and time to TOTAL_STATS file. It doesn’t write if hold is True.

	
write_total_stat_by_retries(total_stats, first_retrial=False)

	Writes all data to TOTAL_STATS file
:param total_stats: data gathered by the wrapper
:type total_stats: dict
:param first_retrial: True if this is the first retry, False otherwise
:type first_retrial: bool

	
class autosubmit.job.job.WrapperJob(name, job_id, status, priority, job_list, total_wallclock, num_processors, platform, as_config, hold)

	Defines a wrapper from a package.

Calls Job constructor.

	Parameters:

	
	name (String) – Name of the Package

	job_id (Integer) – ID of the first Job of the package

	status (String) – ‘READY’ when coming from submit_ready_jobs()

	priority (Integer) – 0 when coming from submit_ready_jobs()

	job_list (List() of Job() objects) – List of jobs in the package

	total_wallclock (String Formatted) – Wallclock of the package

	num_processors (Integer) – Number of processors for the package

	platform (Platform Object. e.g. EcPlatform()) – Platform object defined for the package

	as_config (AutosubmitConfig object) – Autosubmit basic configuration object

	
class autosubmit.job.job_common.StatisticsSnippetBash

	Class to handle the statistics snippet of a job. It contains header and tailer for
local and remote jobs

	
class autosubmit.job.job_common.StatisticsSnippetEmpty

	Class to handle the statistics snippet of a job. It contains header and footer for
local and remote jobs

	
class autosubmit.job.job_common.StatisticsSnippetPython(version='3')

	Class to handle the statistics snippet of a job. It contains header and tailer for
local and remote jobs

	
class autosubmit.job.job_common.StatisticsSnippetR

	Class to handle the statistics snippet of a job. It contains header and tailer for
local and remote jobs

	
class autosubmit.job.job_common.Status

	Class to handle the status of a job

	
class autosubmit.job.job_common.Type

	Class to handle the status of a job

	
autosubmit.job.job_common.increase_wallclock_by_chunk(current, increase, chunk)

	Receives the wallclock times an increases it according to a quantity times the number of the current chunk.
The result cannot be larger than 48:00.
If Chunk = 0 then no increment.

	Parameters:

	
	current (str) – WALLCLOCK HH:MM

	increase (str) – WCHUNKINC HH:MM

	chunk (int) – chunk number

	Returns:

	HH:MM wallclock

	Return type:

	str

	
autosubmit.job.job_common.parse_output_number(string_number)

	Parses number in format 1.0K 1.0M 1.0G

	Parameters:

	string_number (str) – String representation of number

	Returns:

	number in float format

	Return type:

	float

	
class autosubmit.job.job_list.JobList(expid, config, parser_factory, job_list_persistence, as_conf)

	Class to manage the list of jobs to be run by autosubmit

	
add_logs(logs)

	add logs to the current job_list
:return: logs
:rtype: dict(tuple)

	
add_special_conditions(job, special_conditions, filters_to_apply, parent)

	Add special conditions to the job edge
:param job: Job
:param special_conditions: dict
:param filters_to_apply: dict
:param parent: parent job
:return:

	
backup_save()

	Persists the job list

	
check_checkpoint(job, parent)

	Check if a checkpoint step exists for this edge

	
check_scripts(as_conf)

	When we have created the scripts, all parameters should have been substituted.
%PARAMETER% handlers not allowed

	Parameters:

	as_conf (AutosubmitConfig) – experiment configuration

	
check_special_status()

	Check if all parents of a job have the correct status for checkpointing
:return: jobs that fullfill the special conditions

	
property expid

	Returns the experiment identifier

	Returns:

	experiment’s identifier

	Return type:

	str

	
find_and_delete_redundant_relations(problematic_jobs)

	Jobs with intrisic rules than can’t be safelty not added without messing other workflows.
The graph will have the least amount of edges added as much as safely possible before this function.
Structure:
problematic_jobs structure is {section: {child_name: [parent_names]}}

	Returns:

	

	
generate(as_conf, date_list, member_list, num_chunks, chunk_ini, parameters, date_format, default_retrials, default_job_type, wrapper_jobs={}, new=True, run_only_members=[], show_log=True, monitor=False, force=False, create=False)

	Creates all jobs needed for the current workflow.
:param as_conf: AutosubmitConfig object
:type as_conf: AutosubmitConfig
:param date_list: list of dates
:type date_list: list
:param member_list: list of members
:type member_list: list
:param num_chunks: number of chunks
:type num_chunks: int
:param chunk_ini: initial chunk
:type chunk_ini: int
:param parameters: parameters
:type parameters: dict
:param date_format: date format (D/M/Y)
:type date_format: str
:param default_retrials: default number of retrials
:type default_retrials: int
:param default_job_type: default job type
:type default_job_type: str
:param wrapper_jobs: wrapper jobs
:type wrapper_jobs: dict
:param new: new
:type new: bool
:param run_only_members: run only members
:type run_only_members: list
:param show_log: show log
:type show_log: bool
:param monitor: monitor
:type monitor: bool

	
get_active(platform=None, wrapper=False)

	Returns a list of active jobs (In platforms queue + Ready)

	Parameters:

	
	wrapper –

	platform (HPCPlatform) – job platform

	Returns:

	active jobs

	Return type:

	list

	
get_all(platform=None, wrapper=False)

	Returns a list of all jobs

	Parameters:

	
	wrapper –

	platform (HPCPlatform) – job platform

	Returns:

	all jobs

	Return type:

	list

	
get_chunk_list()

	Get inner chunk list

	Returns:

	chunk list

	Return type:

	list

	
get_completed(platform=None, wrapper=False)

	Returns a list of completed jobs

	Parameters:

	
	wrapper –

	platform (HPCPlatform) – job platform

	Returns:

	completed jobs

	Return type:

	list

	
get_completed_without_logs(platform=None)

	Returns a list of completed jobs without updated logs

	Parameters:

	platform (HPCPlatform) – job platform

	Returns:

	completed jobs

	Return type:

	list

	
get_date_list()

	Get inner date list

	Returns:

	date list

	Return type:

	list

	
get_delayed(platform=None)

	Returns a list of delayed jobs

	Parameters:

	platform (HPCPlatform) – job platform

	Returns:

	delayed jobs

	Return type:

	list

	
get_failed(platform=None, wrapper=False)

	Returns a list of failed jobs

	Parameters:

	
	wrapper –

	platform (HPCPlatform) – job platform

	Returns:

	failed jobs

	Return type:

	list

	
get_finished(platform=None, wrapper=False)

	Returns a list of jobs finished (Completed, Failed)

	Parameters:

	
	wrapper –

	platform (HPCPlatform) – job platform

	Returns:

	finished jobs

	Return type:

	list

	
get_held_jobs(platform=None)

	Returns a list of jobs in the platforms (Held)

	Parameters:

	platform (HPCPlatform) – job platform

	Returns:

	jobs in platforms

	Return type:

	list

	
get_in_queue(platform=None, wrapper=False)

	Returns a list of jobs in the platforms (Submitted, Running, Queuing, Unknown,Held)

	Parameters:

	
	wrapper –

	platform (HPCPlatform) – job platform

	Returns:

	jobs in platforms

	Return type:

	list

	
get_job_by_name(name)

	Returns the job that its name matches parameter name

	Parameters:

	name (str) – name to look for

	Returns:

	found job

	Return type:

	job

	
get_job_list()

	Get inner job list

	Returns:

	job list

	Return type:

	list

	
get_job_names(lower_case=False)

	Returns a list of all job names
:param: lower_case: if true, returns lower case job names
:type: lower_case: bool

	Returns:

	all job names

	Return type:

	list

	
get_job_related(select_jobs_by_name='', select_all_jobs_by_section='', filter_jobs_by_section='', two_step_start=True)

	
	Parameters:

	
	two_step_start –

	select_jobs_by_name – job name

	select_all_jobs_by_section – section name

	filter_jobs_by_section – section, date , member? , chunk?

	Returns:

	jobs_list names

	Return type:

	list

	
get_jobs_by_section(section_list)

	Returns the job that its name matches parameter section
:parameter section_list: list of sections to look for
:type section_list: list
:return: found job
:rtype: job

	
get_logs()

	Returns a dict of logs by jobs_name jobs

	Returns:

	logs

	Return type:

	dict(tuple)

	
get_member_list()

	Get inner member list

	Returns:

	member list

	Return type:

	list

	
get_not_in_queue(platform=None, wrapper=False)

	Returns a list of jobs NOT in the platforms (Ready, Waiting)

	Parameters:

	
	wrapper –

	platform (HPCPlatform) – job platform

	Returns:

	jobs not in platforms

	Return type:

	list

	
get_ordered_jobs_by_date_member(section)

	Get the dictionary of jobs ordered according to wrapper’s expression divided by date and member

	Returns:

	jobs ordered divided by date and member

	Return type:

	dict

	
get_prepared(platform=None)

	Returns a list of prepared jobs

	Parameters:

	platform (HPCPlatform) – job platform

	Returns:

	prepared jobs

	Return type:

	list

	
get_queuing(platform=None, wrapper=False)

	Returns a list of jobs queuing

	Parameters:

	
	wrapper –

	platform (HPCPlatform) – job platform

	Returns:

	queuedjobs

	Return type:

	list

	
get_ready(platform=None, hold=False, wrapper=False)

	Returns a list of ready jobs

	Parameters:

	
	wrapper –

	hold –

	platform (HPCPlatform) – job platform

	Returns:

	ready jobs

	Return type:

	list

	
get_running(platform=None, wrapper=False)

	Returns a list of jobs running

	Parameters:

	
	wrapper –

	platform (HPCPlatform) – job platform

	Returns:

	running jobs

	Return type:

	list

	
get_skipped(platform=None)

	Returns a list of skipped jobs

	Parameters:

	platform (HPCPlatform) – job platform

	Returns:

	skipped jobs

	Return type:

	list

	
get_submitted(platform=None, hold=False, wrapper=False)

	Returns a list of submitted jobs

	Parameters:

	
	wrapper –

	hold –

	platform (HPCPlatform) – job platform

	Returns:

	submitted jobs

	Return type:

	list

	
get_suspended(platform=None, wrapper=False)

	Returns a list of jobs on unknown state

	Parameters:

	
	wrapper –

	platform (HPCPlatform) – job platform

	Returns:

	unknown state jobs

	Return type:

	list

	
get_uncompleted(platform=None, wrapper=False)

	Returns a list of completed jobs

	Parameters:

	
	wrapper –

	platform (HPCPlatform) – job platform

	Returns:

	completed jobs

	Return type:

	list

	
get_uncompleted_and_not_waiting(platform=None, wrapper=False)

	Returns a list of completed jobs and waiting

	Parameters:

	
	wrapper –

	platform (HPCPlatform) – job platform

	Returns:

	completed jobs

	Return type:

	list

	
get_unknown(platform=None, wrapper=False)

	Returns a list of jobs on unknown state

	Parameters:

	
	wrapper –

	platform (HPCPlatform) – job platform

	Returns:

	unknown state jobs

	Return type:

	list

	
get_unsubmitted(platform=None, wrapper=False)

	Returns a list of unsubmitted jobs

	Parameters:

	
	wrapper –

	platform (HPCPlatform) – job platform

	Returns:

	all jobs

	Return type:

	list

	
get_waiting(platform=None, wrapper=False)

	Returns a list of jobs waiting

	Parameters:

	
	wrapper –

	platform (HPCPlatform) – job platform

	Returns:

	waiting jobs

	Return type:

	list

	
get_waiting_remote_dependencies(platform_type='slurm')

	Returns a list of jobs waiting on slurm scheduler
:param platform_type: platform type
:type platform_type: str
:return: waiting jobs
:rtype: list

	
load(create=False, backup=False)

	Recreates a stored job list from the persistence

	Returns:

	loaded job list object

	Return type:

	JobList

	
static load_file(filename)

	Recreates a stored joblist from the pickle file

	Parameters:

	filename (str) – pickle file to load

	Returns:

	loaded joblist object

	Return type:

	JobList

	
property parameters

	List of parameters common to all jobs
:return: parameters
:rtype: dict

	
print_with_status(statusChange=None, nocolor=False, existingList=None)

	Returns the string representation of the dependency tree of
the Job List

	Parameters:

	
	statusChange (List of strings) – List of changes in the list, supplied in set status

	nocolor (Boolean) – True if the result should not include color codes

	existingList (List of Job Objects) – External List of Jobs that will be printed, this excludes the inner list of jobs.

	Returns:

	String representation

	Return type:

	String

	
remove_rerun_only_jobs(notransitive=False)

	Removes all jobs to be run only in reruns

	
rerun(job_list_unparsed, as_conf, monitor=False)

	Updates job list to rerun the jobs specified by a job list
:param job_list_unparsed: list of jobs to rerun
:type job_list_unparsed: str
:param as_conf: experiment configuration
:type as_conf: AutosubmitConfig
:param monitor: if True, the job list will be monitored
:type monitor: bool

	
static retrieve_packages(BasicConfig, expid, current_jobs=None)

	Retrieves dictionaries that map the collection of packages in the experiment

	Parameters:

	
	BasicConfig (Configuration Object) – Basic configuration

	expid (String) – Experiment ID

	current_jobs (list) – list of names of current jobs

	Returns:

	job to package, package to job, package to package_id, package to symbol

	Return type:

	Dictionary(Job Object, Package), Dictionary(Package, List of Job Objects), Dictionary(String, String), Dictionary(String, String)

	
static retrieve_times(status_code, name, tmp_path, make_exception=False, job_times=None, seconds=False, job_data_collection=None)

	Retrieve job timestamps from database.
:param job_data_collection:
:param seconds:
:param status_code: Code of the Status of the job
:type status_code: Integer
:param name: Name of the job
:type name: String
:param tmp_path: Path to the tmp folder of the experiment
:type tmp_path: String
:param make_exception: flag for testing purposes
:type make_exception: Boolean
:param job_times: Detail from as_times.job_times for the experiment
:type job_times: Dictionary Key: job name, Value: 5-tuple (submit time, start time, finish time, status, detail id)
:return: minutes the job has been queuing, minutes the job has been running, and the text that represents it
:rtype: int, int, str

	
save()

	Persists the job list

	
sort_by_id()

	Returns a list of jobs sorted by id

	Returns:

	jobs sorted by ID

	Return type:

	list

	
sort_by_name()

	Returns a list of jobs sorted by name

	Returns:

	jobs sorted by name

	Return type:

	list

	
sort_by_status()

	Returns a list of jobs sorted by status

	Returns:

	job sorted by status

	Return type:

	list

	
sort_by_type()

	Returns a list of jobs sorted by type

	Returns:

	job sorted by type

	Return type:

	list

	
update_from_file(store_change=True)

	Updates jobs list on the fly from and update file
:param store_change: if True, renames the update file to avoid reloading it at the next iteration

	
update_genealogy()

	When we have created the job list, every type of job is created.
Update genealogy remove jobs that have no templates

	
update_list(as_conf: AutosubmitConfig, store_change: bool = True, fromSetStatus: bool = False, submitter: Optional[object] = None, first_time: bool = False) → bool

	Updates job list, resetting failed jobs and changing to READY all WAITING jobs with all parents COMPLETED

	Parameters:

	
	first_time –

	submitter –

	fromSetStatus –

	store_change –

	as_conf (AutosubmitConfig) – autosubmit config object

	Returns:

	True if job status were modified, False otherwise

	Return type:

	bool

	
update_log_status(job, as_conf)

	Updates the log err and log out.

autosubmit.monitor

	
class autosubmit.monitor.monitor.Monitor

	Class to handle monitoring of Jobs at HPC.

	
static clean_plot(expid)

	Function to clean space on BasicConfig.LOCAL_ROOT_DIR/plot directory.
Removes all plots except last two.

	Parameters:

	expid (str) – experiment’s identifier

	
static clean_stats(expid)

	Function to clean space on BasicConfig.LOCAL_ROOT_DIR/plot directory.
Removes all stats’ plots except last two.

	Parameters:

	expid (str) – experiment’s identifier

	
static color_status(status)

	Return color associated to given status

	Parameters:

	status (Status) – status

	Returns:

	color

	Return type:

	str

	
create_tree_list(expid, joblist, packages, groups, hide_groups=False)

	Create graph from joblist

	Parameters:

	
	hide_groups –

	groups –

	packages –

	expid (str) – experiment’s identifier

	joblist (JobList) – joblist to plot

	Returns:

	created graph

	Return type:

	pydotplus.Dot

	
generate_output(expid, joblist, path, output_format='pdf', packages=None, show=False, groups={}, hide_groups=False, job_list_object=None)

	Plots graph for joblist and stores it in a file

	Parameters:

	
	hide_groups –

	groups –

	packages –

	path –

	expid (str) – experiment’s identifier

	joblist (List of Job objects) – list of jobs to plot

	output_format (str (png, pdf, ps)) – file format for plot

	show (bool) – if true, will open the new plot with the default viewer

	job_list_object (JobList object) – Object that has the main txt generation method

	
generate_output_stats(expid: str, joblist: List[Job], output_format: str = 'pdf', period_ini: Optional[datetime] = None, period_fi: Optional[datetime] = None, show: bool = False, queue_time_fixes: Optional[Dict[str, int]] = None) → None

	Plots stats for joblist and stores it in a file

	Parameters:

	
	queue_time_fixes –

	expid (str) – experiment’s identifier

	joblist (JobList) – joblist to plot

	output_format (str (png, pdf, ps)) – file format for plot

	period_ini (datetime) – initial datetime of filtered period

	period_fi (datetime) – final datetime of filtered period

	show (bool) – if true, will open the new plot with the default viewer

	
generate_output_txt(expid, joblist, path, classictxt=False, job_list_object=None)

	Function that generates a representation of the jobs in a txt file
:param classictxt:
:param path:
:param expid: experiment’s identifier
:type expid: str
:param joblist: experiment’s list of jobs
:type joblist: list
:param job_list_object: Object that has the main txt generation method
:type job_list_object: JobList object

	
static get_general_stats(expid: str) → List[str]

	Returns all the options in the sections of the %expid%_GENERAL_STATS. Options with values larger than GENERAL_STATS_OPTION_MAX_LENGTH characters are not added.

	Parameters:

	expid (str) – experiment’s identifier

	Returns:

	list of tuples (section, ‘’), (option, value), (option, value), (section, ‘’), (option, value), …

	Return type:

	list

autosubmit.platform

	
class autosubmit.platforms.ecplatform.EcPlatform(expid, name, config, scheduler)

	Bases: ParamikoPlatform

Class to manage queues with ecaccess

	Parameters:

	
	expid (str) – experiment’s identifier

	scheduler (str (pbs, loadleveler)) – scheduler to use

	
check_Alljobs(job_list, as_conf, retries=5)

	Checks jobs running status
:param job_list: list of jobs
:type job_list: list
:param job_list_cmd: list of jobs in the queue system
:type job_list_cmd: str
:param remote_logs: remote logs
:type remote_logs: str
:param retries: retries
:type default_status: bool
:return: current job status
:rtype: autosubmit.job.job_common.Status

	
connect(as_conf, reconnect=False)

	In this case, it does nothing because connection is established for each command

	Returns:

	True

	Return type:

	bool

	
delete_file(filename)

	Deletes a file from this platform

	Parameters:

	filename (str) – file name

	Returns:

	True if successful or file does not exist

	Return type:

	bool

	
get_checkAlljobs_cmd(jobs_id)

	Returns command to check jobs status on remote platforms

	Parameters:

	
	jobs_id – id of jobs to check

	jobs_id – str

	Returns:

	command to check job status

	Return type:

	str

	
get_checkjob_cmd(job_id)

	Returns command to check job status on remote platforms

	Parameters:

	
	job_id – id of job to check

	job_id – int

	Returns:

	command to check job status

	Return type:

	str

	
get_file(filename, must_exist=True, relative_path='', ignore_log=False, wrapper_failed=False)

	Copies a file from the current platform to experiment’s tmp folder

	Parameters:

	
	wrapper_failed –

	ignore_log –

	filename (str) – file name

	must_exist (bool) – If True, raises an exception if file can not be copied

	relative_path (str) – path inside the tmp folder

	Returns:

	True if file is copied successfully, false otherwise

	Return type:

	bool

	
get_mkdir_cmd()

	Gets command to create directories on HPC

	Returns:

	command to create directories on HPC

	Return type:

	str

	
get_ssh_output()

	Gets output from last command executed

	Returns:

	output from last command

	Return type:

	str

	
get_submit_cmd(job_script, job, hold=False, export='')

	Get command to add job to scheduler

	Parameters:

	
	job –

	job_script – path to job script

	job_script – str

	hold – submit a job in a held status

	hold – boolean

	export – modules that should’ve downloaded

	export – string

	Returns:

	command to submit job to platforms

	Return type:

	str

	
get_submitted_job_id(output, x11=False)

	Parses submit command output to extract job id
:param x11:
:param output: output to parse
:type output: str
:return: job id
:rtype: str

	
jobs_in_queue()

	Returns empty list because ecacces does not support this command

	Returns:

	empty list

	Return type:

	list

	
move_file(src, dest, must_exist=False)

	Moves a file on the platform (includes .err and .out)
:param src: source name
:type src: str
:param dest: destination name
:param must_exist: ignore if file exist or not
:type dest: str

	
parse_Alljobs_output(output, job_id)

	Parses check jobs command output, so it can be interpreted by autosubmit
:param output: output to parse
:param job_id: select the job to parse
:type output: str
:return: job status
:rtype: str

	
parse_job_output(output)

	Parses check job command output, so it can be interpreted by autosubmit

	Parameters:

	output (str) – output to parse

	Returns:

	job status

	Return type:

	str

	
restore_connection(as_conf)

	In this case, it does nothing because connection is established for each command

	Returns:

	True

	Return type:

	bool

	
send_command(command, ignore_log=False, x11=False)

	Sends given command to HPC

	Parameters:

	
	x11 –

	ignore_log –

	command (str) – command to send

	Returns:

	True if executed, False if failed

	Return type:

	bool

	
send_file(filename, check=True)

	Sends a local file to the platform
:param check:
:param filename: name of the file to send
:type filename: str

	
submit_Script(hold=False)

	Sends a Submitfile Script, exec in platform and retrieve the Jobs_ID.
:param hold: send job hold
:type hold: boolean
:return: job id for the submitted job
:rtype: int

	
test_connection(as_conf)

	In this case, it does nothing because connection is established for each command

	Returns:

	True

	Return type:

	bool

	
update_cmds()

	Updates commands for platforms

	
class autosubmit.platforms.lsfplatform.LsfPlatform(expid, name, config)

	Bases: ParamikoPlatform

Class to manage jobs to host using LSF scheduler

	Parameters:

	expid (str) – experiment’s identifier

	
check_Alljobs(job_list, as_conf, retries=5)

	Checks jobs running status
:param job_list: list of jobs
:type job_list: list
:param job_list_cmd: list of jobs in the queue system
:type job_list_cmd: str
:param remote_logs: remote logs
:type remote_logs: str
:param retries: retries
:type default_status: bool
:return: current job status
:rtype: autosubmit.job.job_common.Status

	
get_checkAlljobs_cmd(jobs_id)

	Returns command to check jobs status on remote platforms

	Parameters:

	
	jobs_id – id of jobs to check

	jobs_id – str

	Returns:

	command to check job status

	Return type:

	str

	
get_checkjob_cmd(job_id)

	Returns command to check job status on remote platforms

	Parameters:

	
	job_id – id of job to check

	job_id – int

	Returns:

	command to check job status

	Return type:

	str

	
get_mkdir_cmd()

	Gets command to create directories on HPC

	Returns:

	command to create directories on HPC

	Return type:

	str

	
get_submit_cmd(job_script, job, hold=False, export='')

	Get command to add job to scheduler

	Parameters:

	
	job –

	job_script – path to job script

	job_script – str

	hold – submit a job in a held status

	hold – boolean

	export – modules that should’ve downloaded

	export – string

	Returns:

	command to submit job to platforms

	Return type:

	str

	
get_submitted_job_id(output, x11=False)

	Parses submit command output to extract job id
:param x11:
:param output: output to parse
:type output: str
:return: job id
:rtype: str

	
parse_Alljobs_output(output, job_id)

	Parses check jobs command output, so it can be interpreted by autosubmit
:param output: output to parse
:param job_id: select the job to parse
:type output: str
:return: job status
:rtype: str

	
parse_job_output(output)

	Parses check job command output, so it can be interpreted by autosubmit

	Parameters:

	output (str) – output to parse

	Returns:

	job status

	Return type:

	str

	
submit_Script(hold=False)

	Sends a Submitfile Script, exec in platform and retrieve the Jobs_ID.
:param hold: send job hold
:type hold: boolean
:return: job id for the submitted job
:rtype: int

	
update_cmds()

	Updates commands for platforms

	
class autosubmit.platforms.pbsplatform.PBSPlatform(expid, name, config, version)

	Bases: ParamikoPlatform

Class to manage jobs to host using PBS scheduler

	Parameters:

	
	expid (str) – experiment’s identifier

	version (str) – scheduler version

	
check_Alljobs(job_list, as_conf, retries=5)

	Checks jobs running status
:param job_list: list of jobs
:type job_list: list
:param job_list_cmd: list of jobs in the queue system
:type job_list_cmd: str
:param remote_logs: remote logs
:type remote_logs: str
:param retries: retries
:type default_status: bool
:return: current job status
:rtype: autosubmit.job.job_common.Status

	
get_checkAlljobs_cmd(jobs_id)

	Returns command to check jobs status on remote platforms

	Parameters:

	
	jobs_id – id of jobs to check

	jobs_id – str

	Returns:

	command to check job status

	Return type:

	str

	
get_checkjob_cmd(job_id)

	Returns command to check job status on remote platforms

	Parameters:

	
	job_id – id of job to check

	job_id – int

	Returns:

	command to check job status

	Return type:

	str

	
get_mkdir_cmd()

	Gets command to create directories on HPC

	Returns:

	command to create directories on HPC

	Return type:

	str

	
get_submit_cmd(job_script, job, hold=False, export='')

	Get command to add job to scheduler

	Parameters:

	
	job –

	job_script – path to job script

	job_script – str

	hold – submit a job in a held status

	hold – boolean

	export – modules that should’ve downloaded

	export – string

	Returns:

	command to submit job to platforms

	Return type:

	str

	
get_submitted_job_id(output, x11=False)

	Parses submit command output to extract job id
:param x11:
:param output: output to parse
:type output: str
:return: job id
:rtype: str

	
parse_Alljobs_output(output, job_id)

	Parses check jobs command output, so it can be interpreted by autosubmit
:param output: output to parse
:param job_id: select the job to parse
:type output: str
:return: job status
:rtype: str

	
parse_job_output(output)

	Parses check job command output, so it can be interpreted by autosubmit

	Parameters:

	output (str) – output to parse

	Returns:

	job status

	Return type:

	str

	
submit_Script(hold=False)

	Sends a Submitfile Script, exec in platform and retrieve the Jobs_ID.
:param hold: send job hold
:type hold: boolean
:return: job id for the submitted job
:rtype: int

	
update_cmds()

	Updates commands for platforms

	
class autosubmit.platforms.sgeplatform.SgePlatform(expid, name, config)

	Bases: ParamikoPlatform

Class to manage jobs to host using SGE scheduler

	Parameters:

	expid (str) – experiment’s identifier

	
check_Alljobs(job_list, as_conf, retries=5)

	Checks jobs running status
:param job_list: list of jobs
:type job_list: list
:param job_list_cmd: list of jobs in the queue system
:type job_list_cmd: str
:param remote_logs: remote logs
:type remote_logs: str
:param retries: retries
:type default_status: bool
:return: current job status
:rtype: autosubmit.job.job_common.Status

	
connect(as_conf, reconnect=False)

	In this case, it does nothing because connection is established for each command

	Returns:

	True

	Return type:

	bool

	
get_checkAlljobs_cmd(jobs_id)

	Returns command to check jobs status on remote platforms

	Parameters:

	
	jobs_id – id of jobs to check

	jobs_id – str

	Returns:

	command to check job status

	Return type:

	str

	
get_checkjob_cmd(job_id)

	Returns command to check job status on remote platforms

	Parameters:

	
	job_id – id of job to check

	job_id – int

	Returns:

	command to check job status

	Return type:

	str

	
get_mkdir_cmd()

	Gets command to create directories on HPC

	Returns:

	command to create directories on HPC

	Return type:

	str

	
get_submit_cmd(job_script, job, hold=False, export='')

	Get command to add job to scheduler

	Parameters:

	
	job –

	job_script – path to job script

	job_script – str

	hold – submit a job in a held status

	hold – boolean

	export – modules that should’ve downloaded

	export – string

	Returns:

	command to submit job to platforms

	Return type:

	str

	
get_submitted_job_id(output, x11=False)

	Parses submit command output to extract job id
:param x11:
:param output: output to parse
:type output: str
:return: job id
:rtype: str

	
parse_Alljobs_output(output, job_id)

	Parses check jobs command output, so it can be interpreted by autosubmit
:param output: output to parse
:param job_id: select the job to parse
:type output: str
:return: job status
:rtype: str

	
parse_job_output(output)

	Parses check job command output, so it can be interpreted by autosubmit

	Parameters:

	output (str) – output to parse

	Returns:

	job status

	Return type:

	str

	
restore_connection(as_conf)

	In this case, it does nothing because connection is established for each command

	Returns:

	True

	Return type:

	bool

	
submit_Script(hold=False)

	Sends a Submitfile Script, exec in platform and retrieve the Jobs_ID.
:param hold: send job hold
:type hold: boolean
:return: job id for the submitted job
:rtype: int

	
test_connection(as_conf)

	In this case, it does nothing because connection is established for each command

	Returns:

	True

	Return type:

	bool

	
update_cmds()

	Updates commands for platforms

	
class autosubmit.platforms.slurmplatform.SlurmPlatform(expid, name, config, auth_password=None)

	Bases: ParamikoPlatform

Class to manage jobs to host using SLURM scheduler

	Parameters:

	expid (str) – experiment’s identifier

	
check_remote_log_dir()

	Creates log dir on remote host

	
get_checkAlljobs_cmd(jobs_id)

	Returns command to check jobs status on remote platforms

	Parameters:

	
	jobs_id – id of jobs to check

	jobs_id – str

	Returns:

	command to check job status

	Return type:

	str

	
get_checkjob_cmd(job_id)

	Returns command to check job status on remote platforms

	Parameters:

	
	job_id – id of job to check

	job_id – int

	Returns:

	command to check job status

	Return type:

	str

	
get_estimated_queue_time_cmd(job_id)

	Returns command to get estimated queue time on remote platforms

	Parameters:

	
	job_id – id of job to check

	job_id – str

	Returns:

	command to get estimated queue time

	
get_jobid_by_jobname_cmd(job_name)

	Returns command to get job id by job name on remote platforms
:param job_name:
:return: str

	
get_mkdir_cmd()

	Gets command to create directories on HPC

	Returns:

	command to create directories on HPC

	Return type:

	str

	
get_queue_status(in_queue_jobs, list_queue_jobid, as_conf)

	Get queue status for a list of jobs.

The job statuses are normally found via a command sent to the remote platform.

Each job in in_queue_jobs must be updated. Implementations may check
for the reason for queueing cancellation, or if the job is held, and update
the job status appropriately.

	
get_queue_status_cmd(job_id)

	Returns command to get queue status on remote platforms
:return: str

	
get_submit_cmd(job_script, job, hold=False, export='')

	Get command to add job to scheduler

	Parameters:

	
	job –

	job_script – path to job script

	job_script – str

	hold – submit a job in a held status

	hold – boolean

	export – modules that should’ve downloaded

	export – string

	Returns:

	command to submit job to platforms

	Return type:

	str

	
get_submitted_job_id(outputlines, x11=False)

	Parses submit command output to extract job id
:param x11:
:param output: output to parse
:type output: str
:return: job id
:rtype: str

	
open_submit_script()

	Opens Submit script file

	
parse_Alljobs_output(output, job_id)

	Parses check jobs command output, so it can be interpreted by autosubmit
:param output: output to parse
:param job_id: select the job to parse
:type output: str
:return: job status
:rtype: str

	
parse_job_finish_data(output, packed)

	Parses the context of the sacct query to SLURM for a single job.
Only normal jobs return submit, start, finish, joules, ncpus, nnodes.

When a wrapper has finished, capture finish time.

	Parameters:

	
	output (str) – The sacct output

	packed (bool) – true if job belongs to package

	Returns:

	submit, start, finish, joules, ncpus, nnodes, detailed_data

	Return type:

	int, int, int, int, int, int, json object (str)

	
parse_job_output(output)

	Parses check job command output, so it can be interpreted by autosubmit

	Parameters:

	output (str) – output to parse

	Returns:

	job status

	Return type:

	str

	
parse_queue_reason(output, job_id)

	Parses the queue reason from the output of the command
:param output: output of the command
:param job_id: job id
:return: queue reason
:rtype: str

	
process_batch_ready_jobs(valid_packages_to_submit, failed_packages, error_message='', hold=False)

	Retrieve multiple jobs identifiers.
:param valid_packages_to_submit:
:param failed_packages:
:param error_message:
:param hold:
:return:

	
submit_Script(hold: bool = False) → Union[List[str], str]

	Sends a Submit file Script, execute it in the platform and retrieves the Jobs_ID of all jobs at once.

	Parameters:

	hold (bool) – if True, the job will be held

	Returns:

	job id for submitted jobs

	Return type:

	list(str)

	
submit_job(job, script_name, hold=False, export='none')

	Submit a job from a given job object.

	Parameters:

	
	export –

	job (autosubmit.job.job.Job) – job object

	script_name – job script’s name

	hold (boolean) – send job hold

	Rtype scriptname:

	str

	Returns:

	job id for the submitted job

	Return type:

	int

	
update_cmds()

	Updates commands for platforms

	
class autosubmit.platforms.locplatform.LocalPlatform(expid, name, config, auth_password=None)

	Bases: ParamikoPlatform

Class to manage jobs to localhost

	Parameters:

	expid (str) – experiment’s identifier

	
check_Alljobs(job_list, as_conf, retries=5)

	Checks jobs running status
:param job_list: list of jobs
:type job_list: list
:param job_list_cmd: list of jobs in the queue system
:type job_list_cmd: str
:param remote_logs: remote logs
:type remote_logs: str
:param retries: retries
:type default_status: bool
:return: current job status
:rtype: autosubmit.job.job_common.Status

	
check_file_exists(src, wrapper_failed=False, sleeptime=5, max_retries=3, first=True)

	Moves a file on the platform
:param src: source name
:type src: str
:param: wrapper_failed: if True, the wrapper failed.
:type wrapper_failed: bool

	
connect(as_conf, reconnect=False)

	Creates ssh connection to host

	Returns:

	True if connection is created, False otherwise

	Return type:

	bool

	
delete_file(filename, del_cmd=False)

	Deletes a file from this platform

	Parameters:

	filename (str) – file name

	Returns:

	True if successful or file does not exist

	Return type:

	bool

	
get_checkAlljobs_cmd(jobs_id)

	Returns command to check jobs status on remote platforms

	Parameters:

	
	jobs_id – id of jobs to check

	jobs_id – str

	Returns:

	command to check job status

	Return type:

	str

	
get_checkjob_cmd(job_id)

	Returns command to check job status on remote platforms

	Parameters:

	
	job_id – id of job to check

	job_id – int

	Returns:

	command to check job status

	Return type:

	str

	
get_file(filename, must_exist=True, relative_path='', ignore_log=False, wrapper_failed=False)

	Copies a file from the current platform to experiment’s tmp folder

	Parameters:

	
	wrapper_failed –

	ignore_log –

	filename (str) – file name

	must_exist (bool) – If True, raises an exception if file can not be copied

	relative_path (str) – path inside the tmp folder

	Returns:

	True if file is copied successfully, false otherwise

	Return type:

	bool

	
get_logs_files(exp_id, remote_logs)

	Overriding the parent’s implementation.
Do nothing because the log files are already in the local platform (redundancy).

	Parameters:

	
	exp_id (str) – experiment id

	remote_logs ((str, str)) – names of the log files

	
get_mkdir_cmd()

	Gets command to create directories on HPC

	Returns:

	command to create directories on HPC

	Return type:

	str

	
get_ssh_output()

	Gets output from last command executed

	Returns:

	output from last command

	Return type:

	str

	
get_submit_cmd(job_script, job, hold=False, export='')

	Get command to add job to scheduler

	Parameters:

	
	job –

	job_script – path to job script

	job_script – str

	hold – submit a job in a held status

	hold – boolean

	export – modules that should’ve downloaded

	export – string

	Returns:

	command to submit job to platforms

	Return type:

	str

	
get_submitted_job_id(output, x11=False)

	Parses submit command output to extract job id
:param x11:
:param output: output to parse
:type output: str
:return: job id
:rtype: str

	
move_file(src, dest, must_exist=False)

	Moves a file on the platform (includes .err and .out)
:param src: source name
:type src: str
:param dest: destination name
:param must_exist: ignore if file exist or not
:type dest: str

	
parse_Alljobs_output(output, job_id)

	Parses check jobs command output, so it can be interpreted by autosubmit
:param output: output to parse
:param job_id: select the job to parse
:type output: str
:return: job status
:rtype: str

	
parse_job_output(output)

	Parses check job command output, so it can be interpreted by autosubmit

	Parameters:

	output (str) – output to parse

	Returns:

	job status

	Return type:

	str

	
send_command(command, ignore_log=False, x11=False)

	Sends given command to HPC

	Parameters:

	
	x11 –

	ignore_log –

	command (str) – command to send

	Returns:

	True if executed, False if failed

	Return type:

	bool

	
send_file(filename, check=True)

	Sends a local file to the platform
:param check:
:param filename: name of the file to send
:type filename: str

	
submit_Script(hold=False)

	Sends a Submitfile Script, exec in platform and retrieve the Jobs_ID.
:param hold: send job hold
:type hold: boolean
:return: job id for the submitted job
:rtype: int

	
test_connection(as_conf)

	Test if the connection is still alive, reconnect if not.

	
update_cmds()

	Updates commands for platforms

 Python Module Index

 a

 		 	

 		
 a	

 	[image: -]
 	
 autosubmit	

 	
 	
 autosubmit.autosubmit	

 	
 	
 autosubmit.database.db_common	

 	
 	
 autosubmit.git.autosubmit_git	

 	
 	
 autosubmit.job.job	

 	
 	
 autosubmit.job.job_common	

 	
 	
 autosubmit.job.job_list	

 	
 	
 autosubmit.monitor.monitor	

 	
 	
 autosubmit.platforms.ecplatform	

 	
 	
 autosubmit.platforms.locplatform	

 	
 	
 autosubmit.platforms.lsfplatform	

 	
 	
 autosubmit.platforms.pbsplatform	

 	
 	
 autosubmit.platforms.sgeplatform	

 	
 	
 autosubmit.platforms.slurmplatform	

 	[image: -]
 	
 autosubmitconfigparser	

 	
 	
 autosubmitconfigparser.config.basicconfig	

 	
 	
 autosubmitconfigparser.config.configcommon	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | W

A

 	
 	add_argument() (autosubmit.autosubmit.MyParser method)

 	add_children() (autosubmit.job.job.Job method)

 	add_edge_info() (autosubmit.job.job.Job method)

 	add_logs() (autosubmit.job.job_list.JobList method)

 	add_parent() (autosubmit.job.job.Job method)

 	add_special_conditions() (autosubmit.job.job_list.JobList method)

 	archive() (autosubmit.autosubmit.Autosubmit static method)

 	as_conf_default_values() (autosubmit.autosubmit.Autosubmit static method)

 	Autosubmit (class in autosubmit.autosubmit)

 	
 autosubmit.autosubmit

 	module

 	
 autosubmit.database.db_common

 	module

 	
 autosubmit.git.autosubmit_git

 	module

 	
 autosubmit.job.job

 	module

 	
 autosubmit.job.job_common

 	module

 	
 autosubmit.job.job_list

 	module

 	
 	
 autosubmit.monitor.monitor

 	module

 	
 autosubmit.platforms.ecplatform

 	module

 	
 autosubmit.platforms.locplatform

 	module

 	
 autosubmit.platforms.lsfplatform

 	module

 	
 autosubmit.platforms.pbsplatform

 	module

 	
 autosubmit.platforms.sgeplatform

 	module

 	
 autosubmit.platforms.slurmplatform

 	module

 	AutosubmitConfig (class in autosubmitconfigparser.config.configcommon)

 	
 autosubmitconfigparser.config.basicconfig

 	module

 	
 autosubmitconfigparser.config.configcommon

 	module

 	AutosubmitGit (class in autosubmit.git.autosubmit_git)

B

 	
 	backup_save() (autosubmit.job.job_list.JobList method)

 	
 	BasicConfig (class in autosubmitconfigparser.config.basicconfig)

C

 	
 	calendar_chunk() (autosubmit.job.job.Job method)

 	calendar_split() (autosubmit.job.job.Job method)

 	cat_log() (autosubmit.autosubmit.Autosubmit static method)

 	change_status() (autosubmit.autosubmit.Autosubmit static method)

 	check() (autosubmit.autosubmit.Autosubmit static method)

 	check_Alljobs() (autosubmit.platforms.ecplatform.EcPlatform method)

 	(autosubmit.platforms.locplatform.LocalPlatform method)

 	(autosubmit.platforms.lsfplatform.LsfPlatform method)

 	(autosubmit.platforms.pbsplatform.PBSPlatform method)

 	(autosubmit.platforms.sgeplatform.SgePlatform method)

 	check_autosubmit_conf() (autosubmitconfigparser.config.configcommon.AutosubmitConfig method)

 	check_checkpoint() (autosubmit.job.job_list.JobList method)

 	check_commit() (autosubmit.git.autosubmit_git.AutosubmitGit static method)

 	check_completion() (autosubmit.job.job.Job method)

 	check_conf_files() (autosubmitconfigparser.config.configcommon.AutosubmitConfig method)

 	check_db() (in module autosubmit.database.db_common)

 	check_dict_keys_type() (autosubmitconfigparser.config.configcommon.AutosubmitConfig method)

 	check_end_time() (autosubmit.job.job.Job method)

 	check_expdef_conf() (autosubmitconfigparser.config.configcommon.AutosubmitConfig method)

 	check_experiment_exists() (in module autosubmit.database.db_common)

 	check_file_exists() (autosubmit.platforms.locplatform.LocalPlatform method)

 	check_jobs_conf() (autosubmitconfigparser.config.configcommon.AutosubmitConfig method)

 	check_platforms_conf() (autosubmitconfigparser.config.configcommon.AutosubmitConfig method)

 	check_remote_log_dir() (autosubmit.platforms.slurmplatform.SlurmPlatform method)

 	check_retrials_end_time() (autosubmit.job.job.Job method)

 	check_retrials_start_time() (autosubmit.job.job.Job method)

 	check_running_after() (autosubmit.job.job.Job method)

 	check_script() (autosubmit.job.job.Job method)

 	check_scripts() (autosubmit.job.job_list.JobList method)

 	
 	check_special_status() (autosubmit.job.job_list.JobList method)

 	check_start_time() (autosubmit.job.job.Job method)

 	check_started_after() (autosubmit.job.job.Job method)

 	check_wrapper_conf() (autosubmitconfigparser.config.configcommon.AutosubmitConfig method)

 	check_wrapper_stored_status() (autosubmit.autosubmit.Autosubmit static method)

 	check_wrappers() (autosubmit.autosubmit.Autosubmit static method)

 	checkpoint (autosubmit.job.job.Job property)

 	children (autosubmit.job.job.Job property)

 	children_names_str (autosubmit.job.job.Job property)

 	chunk (autosubmit.job.job.Job property)

 	clean() (autosubmit.autosubmit.Autosubmit static method)

 	clean_dynamic_variables() (autosubmitconfigparser.config.configcommon.AutosubmitConfig method)

 	clean_git() (autosubmit.git.autosubmit_git.AutosubmitGit static method)

 	clean_plot() (autosubmit.monitor.monitor.Monitor static method)

 	clean_stats() (autosubmit.monitor.monitor.Monitor static method)

 	clone_repository() (autosubmit.git.autosubmit_git.AutosubmitGit static method)

 	close_conn() (in module autosubmit.database.db_common)

 	color_status() (autosubmit.monitor.monitor.Monitor static method)

 	configure() (autosubmit.autosubmit.Autosubmit static method)

 	configure_dialog() (autosubmit.autosubmit.Autosubmit static method)

 	connect() (autosubmit.platforms.ecplatform.EcPlatform method)

 	(autosubmit.platforms.locplatform.LocalPlatform method)

 	(autosubmit.platforms.sgeplatform.SgePlatform method)

 	convert_list_to_string() (autosubmitconfigparser.config.configcommon.AutosubmitConfig method)

 	create() (autosubmit.autosubmit.Autosubmit static method)

 	create_db() (in module autosubmit.database.db_common)

 	create_script() (autosubmit.job.job.Job method)

 	create_tree_list() (autosubmit.monitor.monitor.Monitor method)

 	custom_directives (autosubmit.job.job.Job property)

D

 	
 	database_fix() (autosubmit.autosubmit.Autosubmit static method)

 	DbException

 	deep_add_missing_starter_conf() (autosubmitconfigparser.config.configcommon.AutosubmitConfig method)

 	deep_normalize() (autosubmitconfigparser.config.configcommon.AutosubmitConfig method)

 	deep_parameters_export() (autosubmitconfigparser.config.configcommon.AutosubmitConfig method)

 	deep_read_loops() (autosubmitconfigparser.config.configcommon.AutosubmitConfig method)

 	deep_update() (autosubmitconfigparser.config.configcommon.AutosubmitConfig method)

 	delay (autosubmit.job.job.Job property)

 	delay_retrials (autosubmit.job.job.Job property)

 	
 	delete() (autosubmit.autosubmit.Autosubmit static method)

 	delete_child() (autosubmit.job.job.Job method)

 	delete_experiment() (in module autosubmit.database.db_common)

 	delete_file() (autosubmit.platforms.ecplatform.EcPlatform method)

 	(autosubmit.platforms.locplatform.LocalPlatform method)

 	delete_parent() (autosubmit.job.job.Job method)

 	dependencies (autosubmit.job.job.Job property)

 	describe() (autosubmit.autosubmit.Autosubmit static method)

 	detailed_deep_diff() (autosubmitconfigparser.config.configcommon.AutosubmitConfig method)

E

 	
 	EcPlatform (class in autosubmit.platforms.ecplatform)

 	environ_init() (autosubmit.autosubmit.Autosubmit static method)

 	error() (autosubmit.autosubmit.MyParser method)

 	
 	experiment_data (autosubmit.autosubmit.Autosubmit property)

 	expid (autosubmit.job.job_list.JobList property)

 	expid() (autosubmit.autosubmit.Autosubmit static method)

 	export (autosubmit.job.job.Job property)

F

 	
 	fail_count (autosubmit.job.job.Job property)

 	file_modified() (autosubmitconfigparser.config.configcommon.AutosubmitConfig method)

 	
 	find_and_delete_redundant_relations() (autosubmit.job.job_list.JobList method)

 	frequency (autosubmit.job.job.Job property)

G

 	
 	generate() (autosubmit.job.job_list.JobList method)

 	generate_as_config() (autosubmit.autosubmit.Autosubmit static method)

 	generate_output() (autosubmit.monitor.monitor.Monitor method)

 	generate_output_stats() (autosubmit.monitor.monitor.Monitor method)

 	generate_output_txt() (autosubmit.monitor.monitor.Monitor method)

 	generate_scripts_andor_wrappers() (autosubmit.autosubmit.Autosubmit static method)

 	get_active() (autosubmit.job.job_list.JobList method)

 	get_all() (autosubmit.job.job_list.JobList method)

 	get_autosubmit_version() (in module autosubmit.database.db_common)

 	get_checkAlljobs_cmd() (autosubmit.platforms.ecplatform.EcPlatform method)

 	(autosubmit.platforms.locplatform.LocalPlatform method)

 	(autosubmit.platforms.lsfplatform.LsfPlatform method)

 	(autosubmit.platforms.pbsplatform.PBSPlatform method)

 	(autosubmit.platforms.sgeplatform.SgePlatform method)

 	(autosubmit.platforms.slurmplatform.SlurmPlatform method)

 	get_checkjob_cmd() (autosubmit.platforms.ecplatform.EcPlatform method)

 	(autosubmit.platforms.locplatform.LocalPlatform method)

 	(autosubmit.platforms.lsfplatform.LsfPlatform method)

 	(autosubmit.platforms.pbsplatform.PBSPlatform method)

 	(autosubmit.platforms.sgeplatform.SgePlatform method)

 	(autosubmit.platforms.slurmplatform.SlurmPlatform method)

 	get_checkpoint_files() (autosubmit.job.job.Job method)

 	get_chunk_ini() (autosubmitconfigparser.config.configcommon.AutosubmitConfig method)

 	get_chunk_list() (autosubmit.job.job_list.JobList method)

 	get_chunk_size() (autosubmitconfigparser.config.configcommon.AutosubmitConfig method)

 	get_chunk_size_unit() (autosubmitconfigparser.config.configcommon.AutosubmitConfig method)

 	get_communications_library() (autosubmitconfigparser.config.configcommon.AutosubmitConfig method)

 	get_completed() (autosubmit.job.job_list.JobList method)

 	get_completed_without_logs() (autosubmit.job.job_list.JobList method)

 	get_copy_remote_logs() (autosubmitconfigparser.config.configcommon.AutosubmitConfig method)

 	get_current_host() (autosubmitconfigparser.config.configcommon.AutosubmitConfig method)

 	get_current_project() (autosubmitconfigparser.config.configcommon.AutosubmitConfig method)

 	get_current_user() (autosubmitconfigparser.config.configcommon.AutosubmitConfig method)

 	get_custom_directives() (autosubmitconfigparser.config.configcommon.AutosubmitConfig method)

 	get_date_list() (autosubmit.job.job_list.JobList method)

 	(autosubmitconfigparser.config.configcommon.AutosubmitConfig method)

 	get_default_job_type() (autosubmitconfigparser.config.configcommon.AutosubmitConfig method)

 	get_delay_retry_time() (autosubmitconfigparser.config.configcommon.AutosubmitConfig method)

 	get_delayed() (autosubmit.job.job_list.JobList method)

 	get_dependencies() (autosubmitconfigparser.config.configcommon.AutosubmitConfig method)

 	get_disable_recovery_threads() (autosubmitconfigparser.config.configcommon.AutosubmitConfig method)

 	get_estimated_queue_time_cmd() (autosubmit.platforms.slurmplatform.SlurmPlatform method)

 	get_export() (autosubmitconfigparser.config.configcommon.AutosubmitConfig method)

 	get_extensible_wallclock() (autosubmitconfigparser.config.configcommon.AutosubmitConfig method)

 	get_failed() (autosubmit.job.job_list.JobList method)

 	get_fetch_single_branch() (autosubmitconfigparser.config.configcommon.AutosubmitConfig method)

 	get_file() (autosubmit.platforms.ecplatform.EcPlatform method)

 	(autosubmit.platforms.locplatform.LocalPlatform method)

 	get_file_jobs_conf() (autosubmitconfigparser.config.configcommon.AutosubmitConfig method)

 	get_file_project_conf() (autosubmitconfigparser.config.configcommon.AutosubmitConfig method)

 	get_finished() (autosubmit.job.job_list.JobList method)

 	get_full_config_as_json() (autosubmitconfigparser.config.configcommon.AutosubmitConfig method)

 	get_general_stats() (autosubmit.monitor.monitor.Monitor static method)

 	get_git_project_branch() (autosubmitconfigparser.config.configcommon.AutosubmitConfig method)

 	get_git_project_commit() (autosubmitconfigparser.config.configcommon.AutosubmitConfig method)

 	get_git_project_origin() (autosubmitconfigparser.config.configcommon.AutosubmitConfig method)

 	get_git_remote_project_root() (autosubmitconfigparser.config.configcommon.AutosubmitConfig method)

 	get_held_jobs() (autosubmit.job.job_list.JobList method)

 	get_historical_database() (autosubmit.autosubmit.Autosubmit static method)

 	get_in_queue() (autosubmit.job.job_list.JobList method)

 	get_iteration_info() (autosubmit.autosubmit.Autosubmit static method)

 	get_job_by_name() (autosubmit.job.job_list.JobList method)

 	get_job_list() (autosubmit.job.job_list.JobList method)

 	get_job_names() (autosubmit.job.job_list.JobList method)

 	get_job_related() (autosubmit.job.job_list.JobList method)

 	get_jobid_by_jobname_cmd() (autosubmit.platforms.slurmplatform.SlurmPlatform method)

 	get_jobs_by_section() (autosubmit.job.job_list.JobList method)

 	get_last_retrials() (autosubmit.job.job.Job method)

 	get_local_project_path() (autosubmitconfigparser.config.configcommon.AutosubmitConfig method)

 	get_logs() (autosubmit.job.job_list.JobList method)

 	get_logs_files() (autosubmit.platforms.locplatform.LocalPlatform method)

 	get_mails_to() (autosubmitconfigparser.config.configcommon.AutosubmitConfig method)

 	get_max_processors() (autosubmitconfigparser.config.configcommon.AutosubmitConfig method)

 	get_max_waiting_jobs() (autosubmitconfigparser.config.configcommon.AutosubmitConfig method)

 	get_max_wallclock() (autosubmitconfigparser.config.configcommon.AutosubmitConfig method)

 	get_max_wrapped_jobs() (autosubmitconfigparser.config.configcommon.AutosubmitConfig method)

 	get_max_wrapped_jobs_horizontal() (autosubmitconfigparser.config.configcommon.AutosubmitConfig method)

 	get_max_wrapped_jobs_vertical() (autosubmitconfigparser.config.configcommon.AutosubmitConfig method)

 	get_member_list() (autosubmit.job.job_list.JobList method)

 	(autosubmitconfigparser.config.configcommon.AutosubmitConfig method)

 	get_memory() (autosubmitconfigparser.config.configcommon.AutosubmitConfig method)

 	get_memory_per_task() (autosubmitconfigparser.config.configcommon.AutosubmitConfig method)

 	get_migrate_duplicate() (autosubmitconfigparser.config.configcommon.AutosubmitConfig method)

 	get_migrate_host_to() (autosubmitconfigparser.config.configcommon.AutosubmitConfig method)

 	get_migrate_project_to() (autosubmitconfigparser.config.configcommon.AutosubmitConfig method)

 	
 	get_migrate_user_to() (autosubmitconfigparser.config.configcommon.AutosubmitConfig method)

 	get_min_wrapped_jobs() (autosubmitconfigparser.config.configcommon.AutosubmitConfig method)

 	get_min_wrapped_jobs_horizontal() (autosubmitconfigparser.config.configcommon.AutosubmitConfig method)

 	get_min_wrapped_jobs_vertical() (autosubmitconfigparser.config.configcommon.AutosubmitConfig method)

 	get_mkdir_cmd() (autosubmit.platforms.ecplatform.EcPlatform method)

 	(autosubmit.platforms.locplatform.LocalPlatform method)

 	(autosubmit.platforms.lsfplatform.LsfPlatform method)

 	(autosubmit.platforms.pbsplatform.PBSPlatform method)

 	(autosubmit.platforms.sgeplatform.SgePlatform method)

 	(autosubmit.platforms.slurmplatform.SlurmPlatform method)

 	get_new_remotelog_name() (autosubmit.job.job.Job method)

 	get_not_in_queue() (autosubmit.job.job_list.JobList method)

 	get_notifications() (autosubmitconfigparser.config.configcommon.AutosubmitConfig method)

 	get_notifications_crash() (autosubmitconfigparser.config.configcommon.AutosubmitConfig method)

 	get_num_chunks() (autosubmitconfigparser.config.configcommon.AutosubmitConfig method)

 	get_ordered_jobs_by_date_member() (autosubmit.job.job_list.JobList method)

 	get_output_type() (autosubmitconfigparser.config.configcommon.AutosubmitConfig method)

 	get_parse_two_step_start() (autosubmitconfigparser.config.configcommon.AutosubmitConfig method)

 	get_parser() (autosubmitconfigparser.config.configcommon.AutosubmitConfig static method)

 	get_platform() (autosubmitconfigparser.config.configcommon.AutosubmitConfig method)

 	get_prepared() (autosubmit.job.job_list.JobList method)

 	get_processors() (autosubmitconfigparser.config.configcommon.AutosubmitConfig method)

 	get_project_destination() (autosubmitconfigparser.config.configcommon.AutosubmitConfig method)

 	get_project_dir() (autosubmitconfigparser.config.configcommon.AutosubmitConfig method)

 	get_project_submodules_depth() (autosubmitconfigparser.config.configcommon.AutosubmitConfig method)

 	get_project_type() (autosubmitconfigparser.config.configcommon.AutosubmitConfig method)

 	get_queue_status() (autosubmit.platforms.slurmplatform.SlurmPlatform method)

 	get_queue_status_cmd() (autosubmit.platforms.slurmplatform.SlurmPlatform method)

 	get_queuing() (autosubmit.job.job_list.JobList method)

 	get_ready() (autosubmit.job.job_list.JobList method)

 	get_remote_dependencies() (autosubmitconfigparser.config.configcommon.AutosubmitConfig method)

 	get_rerun() (autosubmitconfigparser.config.configcommon.AutosubmitConfig method)

 	get_rerun_jobs() (autosubmitconfigparser.config.configcommon.AutosubmitConfig method)

 	get_retrials() (autosubmitconfigparser.config.configcommon.AutosubmitConfig method)

 	get_running() (autosubmit.job.job_list.JobList method)

 	get_safetysleeptime() (autosubmitconfigparser.config.configcommon.AutosubmitConfig method)

 	get_scratch_free_space() (autosubmitconfigparser.config.configcommon.AutosubmitConfig method)

 	get_section() (autosubmitconfigparser.config.configcommon.AutosubmitConfig method)

 	get_skipped() (autosubmit.job.job_list.JobList method)

 	get_ssh_output() (autosubmit.platforms.ecplatform.EcPlatform method)

 	(autosubmit.platforms.locplatform.LocalPlatform method)

 	get_storage_type() (autosubmitconfigparser.config.configcommon.AutosubmitConfig method)

 	get_submit_cmd() (autosubmit.platforms.ecplatform.EcPlatform method)

 	(autosubmit.platforms.locplatform.LocalPlatform method)

 	(autosubmit.platforms.lsfplatform.LsfPlatform method)

 	(autosubmit.platforms.pbsplatform.PBSPlatform method)

 	(autosubmit.platforms.sgeplatform.SgePlatform method)

 	(autosubmit.platforms.slurmplatform.SlurmPlatform method)

 	get_submitted() (autosubmit.job.job_list.JobList method)

 	get_submitted_job_id() (autosubmit.platforms.ecplatform.EcPlatform method)

 	(autosubmit.platforms.locplatform.LocalPlatform method)

 	(autosubmit.platforms.lsfplatform.LsfPlatform method)

 	(autosubmit.platforms.pbsplatform.PBSPlatform method)

 	(autosubmit.platforms.sgeplatform.SgePlatform method)

 	(autosubmit.platforms.slurmplatform.SlurmPlatform method)

 	get_submodules_list() (autosubmitconfigparser.config.configcommon.AutosubmitConfig method)

 	get_suspended() (autosubmit.job.job_list.JobList method)

 	get_svn_project_revision() (autosubmitconfigparser.config.configcommon.AutosubmitConfig method)

 	get_svn_project_url() (autosubmitconfigparser.config.configcommon.AutosubmitConfig method)

 	get_synchronize() (autosubmitconfigparser.config.configcommon.AutosubmitConfig method)

 	get_tasks() (autosubmitconfigparser.config.configcommon.AutosubmitConfig method)

 	get_threads() (autosubmitconfigparser.config.configcommon.AutosubmitConfig method)

 	get_total_jobs() (autosubmitconfigparser.config.configcommon.AutosubmitConfig method)

 	get_uncompleted() (autosubmit.job.job_list.JobList method)

 	get_uncompleted_and_not_waiting() (autosubmit.job.job_list.JobList method)

 	get_unknown() (autosubmit.job.job_list.JobList method)

 	get_unsubmitted() (autosubmit.job.job_list.JobList method)

 	get_version() (autosubmitconfigparser.config.configcommon.AutosubmitConfig method)

 	get_waiting() (autosubmit.job.job_list.JobList method)

 	get_waiting_remote_dependencies() (autosubmit.job.job_list.JobList method)

 	get_wchunkinc() (autosubmitconfigparser.config.configcommon.AutosubmitConfig method)

 	get_wrapper_check_time() (autosubmitconfigparser.config.configcommon.AutosubmitConfig method)

 	get_wrapper_export() (autosubmitconfigparser.config.configcommon.AutosubmitConfig method)

 	get_wrapper_jobs() (autosubmitconfigparser.config.configcommon.AutosubmitConfig method)

 	get_wrapper_machinefiles() (autosubmitconfigparser.config.configcommon.AutosubmitConfig method)

 	get_wrapper_method() (autosubmitconfigparser.config.configcommon.AutosubmitConfig method)

 	get_wrapper_partition() (autosubmitconfigparser.config.configcommon.AutosubmitConfig method)

 	get_wrapper_policy() (autosubmitconfigparser.config.configcommon.AutosubmitConfig method)

 	get_wrapper_queue() (autosubmitconfigparser.config.configcommon.AutosubmitConfig method)

 	get_wrapper_retrials() (autosubmitconfigparser.config.configcommon.AutosubmitConfig method)

 	get_wrapper_type() (autosubmitconfigparser.config.configcommon.AutosubmitConfig method)

 	get_wrappers() (autosubmitconfigparser.config.configcommon.AutosubmitConfig method)

 	get_x11() (autosubmitconfigparser.config.configcommon.AutosubmitConfig method)

 	get_x11_jobs() (autosubmitconfigparser.config.configcommon.AutosubmitConfig method)

 	get_yaml_filenames_to_load() (autosubmitconfigparser.config.configcommon.AutosubmitConfig method)

H

 	
 	has_children() (autosubmit.job.job.Job method)

 	
 	has_parents() (autosubmit.job.job.Job method)

 	hyperthreading (autosubmit.job.job.Job property)

I

 	
 	inc_fail_count() (autosubmit.job.job.Job method)

 	increase_wallclock_by_chunk() (in module autosubmit.job.job_common)

 	inspect() (autosubmit.autosubmit.Autosubmit static method)

 	install() (autosubmit.autosubmit.Autosubmit static method)

 	
 	is_a_completed_retrial() (autosubmit.job.job.Job static method)

 	is_ancestor() (autosubmit.job.job.Job method)

 	is_over_wallclock() (autosubmit.job.job.Job method)

 	is_parent() (autosubmit.job.job.Job method)

J

 	
 	Job (class in autosubmit.job.job)

 	
 	JobList (class in autosubmit.job.job_list)

 	jobs_in_queue() (autosubmit.platforms.ecplatform.EcPlatform method)

L

 	
 	last_name_used() (in module autosubmit.database.db_common)

 	load() (autosubmit.job.job_list.JobList method)

 	load_common_parameters() (autosubmitconfigparser.config.configcommon.AutosubmitConfig method)

 	load_config_file() (autosubmitconfigparser.config.configcommon.AutosubmitConfig method)

 	load_config_folder() (autosubmitconfigparser.config.configcommon.AutosubmitConfig method)

 	load_custom_config() (autosubmitconfigparser.config.configcommon.AutosubmitConfig method)

 	load_custom_config_section() (autosubmitconfigparser.config.configcommon.AutosubmitConfig method)

 	
 	load_file() (autosubmit.job.job_list.JobList static method)

 	load_parameters() (autosubmitconfigparser.config.configcommon.AutosubmitConfig method)

 	load_platform_parameters() (autosubmitconfigparser.config.configcommon.AutosubmitConfig method)

 	load_section_parameters() (autosubmitconfigparser.config.configcommon.AutosubmitConfig method)

 	LocalPlatform (class in autosubmit.platforms.locplatform)

 	long_name (autosubmit.job.job.Job property)

 	LsfPlatform (class in autosubmit.platforms.lsfplatform)

M

 	
 	member (autosubmit.job.job.Job property)

 	memory (autosubmit.job.job.Job property)

 	memory_per_task (autosubmit.job.job.Job property)

 	migrate() (autosubmit.autosubmit.Autosubmit static method)

 	
 module

 	autosubmit.autosubmit

 	autosubmit.database.db_common

 	autosubmit.git.autosubmit_git

 	autosubmit.job.job

 	autosubmit.job.job_common

 	autosubmit.job.job_list

 	autosubmit.monitor.monitor

 	autosubmit.platforms.ecplatform

 	autosubmit.platforms.locplatform

 	autosubmit.platforms.lsfplatform

 	autosubmit.platforms.pbsplatform

 	autosubmit.platforms.sgeplatform

 	autosubmit.platforms.slurmplatform

 	autosubmitconfigparser.config.basicconfig

 	autosubmitconfigparser.config.configcommon

 	
 	Monitor (class in autosubmit.monitor.monitor)

 	monitor() (autosubmit.autosubmit.Autosubmit static method)

 	move_file() (autosubmit.platforms.ecplatform.EcPlatform method)

 	(autosubmit.platforms.locplatform.LocalPlatform method)

 	MyParser (class in autosubmit.autosubmit)

N

 	
 	name (autosubmit.job.job.Job property)

 	nodes (autosubmit.job.job.Job property)

 	
 	normalize_parameters_keys() (autosubmitconfigparser.config.configcommon.AutosubmitConfig method)

 	normalize_variables() (autosubmitconfigparser.config.configcommon.AutosubmitConfig method)

O

 	
 	open_conn() (in module autosubmit.database.db_common)

 	
 	open_submit_script() (autosubmit.platforms.slurmplatform.SlurmPlatform method)

P

 	
 	packed (autosubmit.job.job.Job property)

 	parameters (autosubmit.job.job_list.JobList property)

 	parents (autosubmit.job.job.Job property)

 	parse_Alljobs_output() (autosubmit.platforms.ecplatform.EcPlatform method)

 	(autosubmit.platforms.locplatform.LocalPlatform method)

 	(autosubmit.platforms.lsfplatform.LsfPlatform method)

 	(autosubmit.platforms.pbsplatform.PBSPlatform method)

 	(autosubmit.platforms.sgeplatform.SgePlatform method)

 	(autosubmit.platforms.slurmplatform.SlurmPlatform method)

 	parse_args() (autosubmit.autosubmit.Autosubmit static method)

 	parse_data_loops() (autosubmitconfigparser.config.configcommon.AutosubmitConfig method)

 	parse_githooks() (autosubmitconfigparser.config.configcommon.AutosubmitConfig method)

 	parse_job_finish_data() (autosubmit.platforms.slurmplatform.SlurmPlatform method)

 	parse_job_output() (autosubmit.platforms.ecplatform.EcPlatform method)

 	(autosubmit.platforms.locplatform.LocalPlatform method)

 	(autosubmit.platforms.lsfplatform.LsfPlatform method)

 	(autosubmit.platforms.pbsplatform.PBSPlatform method)

 	(autosubmit.platforms.sgeplatform.SgePlatform method)

 	(autosubmit.platforms.slurmplatform.SlurmPlatform method)

 	
 	parse_output_number() (in module autosubmit.job.job_common)

 	parse_placeholders() (autosubmitconfigparser.config.configcommon.AutosubmitConfig static method)

 	parse_queue_reason() (autosubmit.platforms.slurmplatform.SlurmPlatform method)

 	partition (autosubmit.job.job.Job property)

 	PBSPlatform (class in autosubmit.platforms.pbsplatform)

 	pkl_fix() (autosubmit.autosubmit.Autosubmit static method)

 	platform (autosubmit.job.job.Job property)

 	prepare_run() (autosubmit.autosubmit.Autosubmit static method)

 	print_with_status() (autosubmit.job.job_list.JobList method)

 	process_batch_ready_jobs() (autosubmit.platforms.slurmplatform.SlurmPlatform method)

 	process_historical_data_iteration() (autosubmit.autosubmit.Autosubmit static method)

 	process_scheduler_parameters() (autosubmit.job.job.Job method)

 	processors (autosubmit.job.job.Job property)

 	processors_per_node (autosubmit.job.job.Job property)

Q

 	
 	queue (autosubmit.job.job.Job property)

 	
 	quick_deep_diff() (autosubmitconfigparser.config.configcommon.AutosubmitConfig method)

R

 	
 	read() (autosubmitconfigparser.config.basicconfig.BasicConfig static method)

 	read_header_tailer_script() (autosubmit.job.job.Job method)

 	recovery() (autosubmit.autosubmit.Autosubmit static method)

 	refresh() (autosubmit.autosubmit.Autosubmit static method)

 	reload() (autosubmitconfigparser.config.configcommon.AutosubmitConfig method)

 	remove_redundant_parents() (autosubmit.job.job.Job method)

 	remove_rerun_only_jobs() (autosubmit.job.job_list.JobList method)

 	report() (autosubmit.autosubmit.Autosubmit static method)

 	rerun() (autosubmit.job.job_list.JobList method)

 	
 	rerun_recovery() (autosubmit.autosubmit.Autosubmit static method)

 	restore_connection() (autosubmit.platforms.ecplatform.EcPlatform method)

 	(autosubmit.platforms.sgeplatform.SgePlatform method)

 	retrials (autosubmit.job.job.Job property)

 	retrieve_logfiles() (autosubmit.job.job.Job method)

 	retrieve_packages() (autosubmit.job.job_list.JobList static method)

 	retrieve_times() (autosubmit.job.job_list.JobList static method)

 	rocrate() (autosubmit.autosubmit.Autosubmit static method)

 	run_experiment() (autosubmit.autosubmit.Autosubmit static method)

S

 	
 	save() (autosubmit.job.job_list.JobList method)

 	(autosubmitconfigparser.config.configcommon.AutosubmitConfig method)

 	save_experiment() (in module autosubmit.database.db_common)

 	scratch_free_space (autosubmit.job.job.Job property)

 	sdate (autosubmit.job.job.Job property)

 	section (autosubmit.job.job.Job property)

 	send_command() (autosubmit.platforms.ecplatform.EcPlatform method)

 	(autosubmit.platforms.locplatform.LocalPlatform method)

 	send_file() (autosubmit.platforms.ecplatform.EcPlatform method)

 	(autosubmit.platforms.locplatform.LocalPlatform method)

 	set_expid() (autosubmitconfigparser.config.configcommon.AutosubmitConfig method)

 	set_git_project_commit() (autosubmitconfigparser.config.configcommon.AutosubmitConfig method)

 	set_new_host() (autosubmitconfigparser.config.configcommon.AutosubmitConfig method)

 	set_new_project() (autosubmitconfigparser.config.configcommon.AutosubmitConfig method)

 	set_new_user() (autosubmitconfigparser.config.configcommon.AutosubmitConfig method)

 	set_platform() (autosubmitconfigparser.config.configcommon.AutosubmitConfig method)

 	set_safetysleeptime() (autosubmitconfigparser.config.configcommon.AutosubmitConfig method)

 	set_status() (autosubmit.autosubmit.Autosubmit static method)

 	set_version() (autosubmitconfigparser.config.configcommon.AutosubmitConfig method)

 	SgePlatform (class in autosubmit.platforms.sgeplatform)

 	signal_handler() (in module autosubmit.autosubmit)

 	signal_handler_create() (in module autosubmit.autosubmit)

 	SlurmPlatform (class in autosubmit.platforms.slurmplatform)

 	
 	sort_by_id() (autosubmit.job.job_list.JobList method)

 	sort_by_name() (autosubmit.job.job_list.JobList method)

 	sort_by_status() (autosubmit.job.job_list.JobList method)

 	sort_by_type() (autosubmit.job.job_list.JobList method)

 	split (autosubmit.job.job.Job property)

 	splits (autosubmit.job.job.Job property)

 	statistics() (autosubmit.autosubmit.Autosubmit static method)

 	StatisticsSnippetBash (class in autosubmit.job.job_common)

 	StatisticsSnippetEmpty (class in autosubmit.job.job_common)

 	StatisticsSnippetPython (class in autosubmit.job.job_common)

 	StatisticsSnippetR (class in autosubmit.job.job_common)

 	Status (class in autosubmit.job.job_common)

 	status_str (autosubmit.job.job.Job property)

 	submit_job() (autosubmit.platforms.slurmplatform.SlurmPlatform method)

 	submit_ready_jobs() (autosubmit.autosubmit.Autosubmit static method)

 	submit_Script() (autosubmit.platforms.ecplatform.EcPlatform method)

 	(autosubmit.platforms.locplatform.LocalPlatform method)

 	(autosubmit.platforms.lsfplatform.LsfPlatform method)

 	(autosubmit.platforms.pbsplatform.PBSPlatform method)

 	(autosubmit.platforms.sgeplatform.SgePlatform method)

 	(autosubmit.platforms.slurmplatform.SlurmPlatform method)

 	substitute_dynamic_variables() (autosubmitconfigparser.config.configcommon.AutosubmitConfig method)

 	synchronize (autosubmit.job.job.Job property)

T

 	
 	tasks (autosubmit.job.job.Job property)

 	test() (autosubmit.autosubmit.Autosubmit static method)

 	test_connection() (autosubmit.platforms.ecplatform.EcPlatform method)

 	(autosubmit.platforms.locplatform.LocalPlatform method)

 	(autosubmit.platforms.sgeplatform.SgePlatform method)

 	
 	testcase() (autosubmit.autosubmit.Autosubmit static method)

 	threads (autosubmit.job.job.Job property)

 	total_processors (autosubmit.job.job.Job property)

 	Type (class in autosubmit.job.job_common)

U

 	
 	unarchive() (autosubmit.autosubmit.Autosubmit static method)

 	unify_conf() (autosubmitconfigparser.config.configcommon.AutosubmitConfig method)

 	update_cmds() (autosubmit.platforms.ecplatform.EcPlatform method)

 	(autosubmit.platforms.locplatform.LocalPlatform method)

 	(autosubmit.platforms.lsfplatform.LsfPlatform method)

 	(autosubmit.platforms.pbsplatform.PBSPlatform method)

 	(autosubmit.platforms.sgeplatform.SgePlatform method)

 	(autosubmit.platforms.slurmplatform.SlurmPlatform method)

 	update_content() (autosubmit.job.job.Job method)

 	
 	update_experiment_descrip_version() (in module autosubmit.database.db_common)

 	update_from_file() (autosubmit.job.job_list.JobList method)

 	update_genealogy() (autosubmit.job.job_list.JobList method)

 	update_job_variables_final_values() (autosubmit.job.job.Job method)

 	update_list() (autosubmit.job.job_list.JobList method)

 	update_log_status() (autosubmit.job.job_list.JobList method)

 	update_parameters() (autosubmit.job.job.Job method)

 	update_status() (autosubmit.job.job.Job method)

 	update_version() (autosubmit.autosubmit.Autosubmit static method)

W

 	
 	wallclock (autosubmit.job.job.Job property)

 	WrapperJob (class in autosubmit.job.job)

 	write_end_time() (autosubmit.job.job.Job method)

 	
 	write_start_time() (autosubmit.job.job.Job method)

 	write_submit_time() (autosubmit.job.job.Job method)

 	write_total_stat_by_retries() (autosubmit.job.job.Job method)

Note

Remember that the purpose of this profiler is to measure the performance of Autosubmit,
not the jobs it runs.

This profiler uses Python’s cProfile and psutil modules to generate a report with simple CPU and
memory metrics which will be displayed in your console after the command finishes, as in the example below:

[image: Screenshot of the header of the profiler's output]

The profiler output is also saved in <EXPID>/tmp/profile. There you will find two files, the
report in plain text format and a .prof binary which contains the CPU metrics. We highly recommend
using SnakeViz [https://jiffyclub.github.io/snakeviz/] to visualize this file, as follows:

[image: The .prof file represented by the graphical library SnakeViz]

For more detailed documentation about the profiler, please visit this page.

Developing an EC-Earth Project

Autosubmit is used at BSC to run EC-Earth. To do that, a git repository has been created that contains the model source
code and the scripts used to run the tasks.

[image: EC-Earth experiment]

Example of monitoring plot for EC-Earth run with Autosubmit for 1 start date, 1 member and 3 chunks.

The workflow is defined using seven job types, as shown in the figure above. These job types are:

	Local_setup: prepares a patch for model changes and copies it to HPC.

	Remote_setup: creates a model copy and applies the patch to it.

	Ini: prepares model to start the simulation of one member.

	Sim: runs a simulation chunk (usually 1 to 3 months).

	Post: post-process outputs for one simulation chunk.

	Clean: removes unnecessary outputs from the simulated chunk.

	Transfer: transfers post-processed outputs to definitive storage.

Autosubmit can download the project from git, svn and local repositories via the parameter PROJECT.PROJECT_TYPE. When the source is a git one, the user can specify the submodules, commit, branch, and tag.

	In addition, the user can also alter the git behaviour and specify other optimization parameters such as:
	
	Fetching one single branch

	Depth of the submodules.

The different projects contain the shell script to run, for each job type (local setup, remote setup, ini, sim, post, clean and transfer) that are platform independent.
Additionally the user can modify the sources under proj folder.
The executable scripts are created at runtime so the modifications on the sources can be done on the fly.

Warning

Autosubmit automatically adds small shell script code blocks in the header and the tailer of your scripts, to control the workflow.
Please, remove any exit command in the end of your scripts, e.g. exit 0.

Important

For a complete reference on how to develop an EC-Earth project, please have a look in the following wiki page: https://earth.bsc.es/wiki/doku.php?id=models:models

 _images/for.png
UNKNOWN ‘WAITING

DELAYED

READY

200d_19600101_00_1_SIM 20

200d_19600101_00_1_SIM. 40

QUEUING

SKIPPED

200d_19600101_00_1_SIM. 80

e

~,

/

~,

/

~,

200d_19600101_00_1 POST 20

200d_19600101_00 2 SIM 20

200d_19600101_00_1 POST 40

200d_19600101_00 2 SIM. 40

a00d_19600101_00_1 POST 80

200d_19600101_00_ 2 SIM. 80

I

a00d_19600101_00 2 POST 20

.

200d_19600101_00 2 POST 40

.

a00d_19600101_00 2 POST 80

_images/frequency.png
v [sov] (S [oumno] [N (oo N (S

a00e_19900101_Member1_ini

a00e_19900101_Member2_ini

y y
a00e_19900101_Memberl_1_sim

a00e_19900101_Member2_1_sim

y y
a00e_19900101_Memberl_2_sim

a00e_19900101_Member2_2_sim

y y
a00e_19900101_Memberl_3_sim

a00e_19900101_Member2_3_sim

~,

a00e_19900101_Memberl_4_sim a00e_19900101_Member2_4_sim

\ N,

a00e_19900101_Member1_3_postprocess a00e_19900101_Memberl_5_sim

a00e_19900101_Member2_5_sim

i \

a00c_19900101_Memberl_5_postprocess | | a00c_19900101_Member2_3_postprocess

a00c_19900101_Member2_5_postprocess

e ~,

a00e_19900101_Memberl_combine a00e_19900101_Member2_combine

_images/experiment_delay_doc.png
UNKNOWN

WAITING

READY

a00z_20000101_fc0_ini

!

a00z_20000101_fc0_1_sim

N

QUEUING

a00z_20000101_fc1_ini

I

a00z_20000101_fc1_1_sim

N

a00z_20000101_fc0_1_post

a00z_20000101_fc0_2.

im

a00z_20000101_fc1_1_post

a00z_20000101_fc1_2_sim

e

~,

a00z_20000101_fc0_2_post

a00z_20000101_fc0_3_sim

T

R

a00z_20000101_fc1_2_post

a00z_20000101_fc1_3_sim

/=

a00z_20000101_fc0_3_asim

a00z_20000101_fc0_4_sim

a00z_20000101_fc1_3_asim

a00z_20000101_fc1_4_sim

L~

L~

a00z_20000101_fc0_3_post

a00z_20000101_fc0_4_asim

a00z_20000101_fc1_3_post

a00z_20000101_fc1_4_asim

A 4

00z_20000101_fc0_4_post

A 2

a00z_20000101_fc1_4_post

_images/fig3.png
WAITING READY - QUEUING

x0cx_19900101_fcO_1_CLEAN

v
x0cx_19900101_fc0_3_SIM

v
0x_19900101_fc0_3_POST | | xo0tx_19900101_fcO_2_POST

A 4 A

00x_19900101_fcO_3_CLEAN | | xxxx_19900101_fc0_2_CLEAN

~,

x00x_19900101_fcO_TRANSFER

_images/group_by_chunk_expand.png
UNKNOWN | | WAITING:

) [

) [(o] [[

013 LOCAL_SETUP

AN

2013.20000101_fc0_INI

2013_20000101_fe 1 INI | | 2013 20000202_fc0_INI

2013 20000202_fel_INI

/

. :

}

2013_20000101_fc0_1_SIM

20000101_fel_1 20000202_fc0_1

20000202_fe1_1

Pl

. I

|

2013_20000101_fc0_I_POST

2013_20000101_fc0_2_SIM

20000101 12) 2000020202)

2013_20000202_fe1 2_SIM

/

/

| |

]

2013.20000101_fe0_I_CLEAN

2013_20000101_fc0_2_ POST

20000101_fc0_3

D 20000101_fe1 3) 20000202_fc0_3)

013_20000202_fe1 2_POST

20000202_fe1 3 D

:

2013_20000101_fc0_2_CLEAN

I

013 20000202_fel_2 CLEAN

_images/group_by_chunk_expand_status.png
UNKNOWN | | WAITING

) (]

013 LOCAL_SETUP

20000101_fel_1

]

QUEUING

013_20000202_fc1_1_SIM

L \

4013_20000101_fc0_I_POST

20000101_fc0_2.

/

4013_20000101_fc0_I_CLEAN

4013_20000101_fc0_3_POST

2013_2000010

20000101_fe1_2 a013_20000202_fc0_I_POST 20000202_fc0_2. a013_20000202_fc 1_1_POST 2013_20000202_fc1_2_SIM
! I ! : !

20000101_fe1_3) a013_20000202_fc0_I_CLEAN | | 20000202_fc0_3 a013_20000202_fcl_I_CLEAN | | a013_20000202_fcl 2 POST | | 20000202_fc1 3
v

4013_20000202_fc1_2_CLEAN

_images/group_automatic.png
2013_20000101_fcl_1_POST

UNKNOWN | | WAITING | | READY

2013_20000202_fc0_1_SIM

20000202_fc1

QUEUING

a013_20000101_fc1_2_SIM.

a013_20000202_fc0_1_POST

20000202_fc0_2

/

N

v

|

2013_20000101_fc1_1_CLEAN

a013_20000101_fc1_2_POST

20000101_fc1_3

2013_20000202_fc0_1_CLEAN

20000202_fc0_3

}

2013_20000101_fcl_2_CLEAN

_images/group_by_chunk_status.png
UNKNOWN WAITING READY

a013_LOCAL_SETUP

A J
20000101_fc0_1) 20000101 _fel_t) 20000202_fe1_t
| I \
20000101_{c0_2 20000101_fel 2 2013.20000202_£c0_1_POST | | 20000202_tc0_2 20000202_fc1_2
— 20000101_1.3[[) | 01320000202 fc0_1_CLEAN | [20000202 1003) 20000202_fc1_3
v

a013_20000101_fc0_3_POST

A 2

a013_20000101_fc0_3_CLEAN

_images/group_by_date_expand.png
) [

013_LOCAL_SETUP

_images/group_by_date_status.png
a013_20000202_fc0_1_POST

UNKNOWN WAITING

READY

a013_LOCAL_SETUP

20000101

a013_20000202_fc1_1_SIM

QUEUING

P

2013_20000202_{c0_2_SIM

a013_20000202_fc1_1_POST

a013_20000202_fc1_2_SIM

/

N

|

L

a013_20000202_fc0_1_CLEAN

a013_20000202_{c0_2_POST

a013_20000202_{c0_3_SIM

a013_20000202_fcl_1_CLEAN

a013_20000202_fc1_2_POST

a013_20000202_fc1_3_SIM

!

:

2013_20000202_fc0_2_CLEAN

a013_20000202_fc0_3_POST

I

a013_20000202_fc0_3_CLEAN

|

I

a013_20000202_fc1_2_ CLEAN

a013_20000202_fc1_3_POST

'

a013_20000202_fc1_3_CLEAN

nav.xhtml

 Table of Contents

 		
 Autosubmit Workflow Manager

_images/group_by_member_expand_status.png
4013_20000101_fc0_I_POST

/

UNKNOWN

WAITING | | READY

013 LOCAL_SETUP

g

20000101_te1][)

QUEUING

20000202_tc1[)

2013_20000202_fc0_1_POST

2013_20000202_fc0_2_SIM

I

|~

2013_20000101_fc0_I_CLEAN

013_20000101_fc0_2 POST

013_20000101_{c0_3 SIM

4013_20000202_fc0_I_CLEAN

2013_20000202_{c0_2_POST

2013_20000202_fc0_3_SIM

|

|

2013_20000101_{c0_2_CLEAN

4013_20000101_fc0_3_POST

I

a013_20000101_fc0_3_CLEAN

]

|

2013_20000202_fc0_2_CLEAN

2013_20000202_fc0_3_POST

|

2013_20000202_fc0_3_CLEAN

_images/group_by_member_status.png
013_20000101_£c0_1_POST

013 LOCAL_SETUP

013.20000101_fe1_1_SIM

~

~,

013_20000101_&1_1_POST

01320000101 fe1 2_SIM

I

D

T

URiows NATHG KEADY - QUEING - - - -

013.20000202_:0_1_POST

013_20000202_20_2_SIM

]

I

I

4013.20000101_1c0_1_CLEAN

4013.20000101_1c0_2 POST

013.20000101_{c0_3_SIM

013.20000101_cl

_CLEAN

013.20000101_fc1 2_POST

4013.20000101_el_3 SIM

01320000202 £c0_1_CLEAN

401320000202 £c0_2 POST | | 3013 20000202_5c0_3 SIM

I

|

013_20000101_£0_2_ CLEAN

013_20000101_£0_3_POST

]

013.20000101_1c0_3 CLEAN

|

|

013_20000101_&1 2 CLEAN

013.20000101_fe1_3 POST

]

01320000101 fe1 3 CLEAN

|

|

01320000202 £c0_2 CLEAN | | 4013 20000202 £c0_3 POST

I

013.20000202_:0_3_CLEAN

_images/group_by_date_status_expand.png
015 20000100 1_$OST.

)) () [(o] O

a1 L0cAL SETUY,

015 20000101 1115t

/

|

ars 20000101 se1post | (o svonon 125

/

/=

a5 200020 s post | [oz o2 smi

1 1

013 20000202 11511

1

wars 200020 i1 1vose | s 000z e 2 5o

| |

015 20000100 CLEAN

013 20000101 0 2 $OST.

015 200001010 3 501

ars 200001 i1 1_cean | [0 mo0aiar e 2 vost

13 200000013 500

wars 200020 1 cuean | [13 2ma0mz i 2 vost.

13 20000200 3 501

ors 20 er_1cean | [0 mowae e 2 vost

013 20000302 13 50

]

|

013 20000101 50 2_CLEAN

01320000101 0 3 $OST.

1

015 2000010103 CLEAN

[

|

015 20000101 i1 2 CLEAN

015 2000010113 $OST.

1

015 2000010111 3_CLEAN

!

|

013200020 50 2_CLEAN

015 20000202 03 POST

]

015 2000020203 CLEAN

]

!

01320000202 112 CLEAN

015 20000202 1 3_$OST.

1

013 2000020 11 3_CLEAN

_images/group_by_member_expand.png
013 LOCAL_SETUP

N

013_20000101_£0_INT

013.20000101_fe1_INT

ooz] [

/

013.20000101_{c0_1_SIM

|

|

013.20000101_fe1_1_SIM

L~

~,

01320000101 £c0_

013.20000101_fc0,

. SiM

013_20000101_&1_1_POST

01320000101 fe1 2_SIM

/

— N\

I

|~

401320000202 £c0_1_SIM

v \

013_20000202_20_2_SIM

v

URiows NATHG KEADY - QUEING - - - -

L~

4013.20000101_1c0_1_CLEAN

01320000101 £c0_2 POST | | a013.20000101_{c0_3_SIM

4013.20000101_fcl_I_CLEAN

013.20000101_fc1 2_POST

4013.20000101_el_3 SIM

01320000202 £c0_1_CLEAN

401320000202 £c0_2 POST

401320000202 £c0_3 SIM

! |

013_20000101_£0_2_ CLEAN | | a013_20000101_£0_3_POST

]

013.20000101_1c0_3 CLEAN

|

|

013_20000101_&1 2 CLEAN

013.20000101_fe1_3 POST

]

01320000101 fe1 3 CLEAN

|

|

01320000202 £c0_2_ CLEAN

401320000202 £c0_3 POST

I

013.20000202_:0_3_CLEAN

_images/group_synchronize.png
UNKNOWN | | WAITING

013 LOCAL_SETUP

QUEUING

a013_20000101_fc0_INI

a013_20000101_fc1_INI | | a013_20000202_fcO_INI

a013_20000202_fc I_INI

!

/

\

/

20000101_fc0_1 20000101_fcl_1 D 20000202_fc0_1 20000202_fc1_1)
I | ; }

20000101_fc0_2 20000101_fcl_2) 20000202_fc0_2 20000202_fc1_2 D
: ; : }

20000101_fc0_3 20000101_fcl_3 20000202_fc0_3 20000202_fc1_3

_images/member-synchronize.png
WAITING | | READY

(] [ouenc] [[cowo] [N (S5

000_20000101_§c0_INI

000_20000101_fe1_INI

000_20010101_§c0_INI

000_20010101_fe1_INI

]

]

]

]

2000_20000101_£c0_1_SIM

2000_20000101_fe1_1_SIM

2000_20010101_£c0_1_SIM

000_20010101_fe1_1_SIM

VAR

g

VARG N

000_20000101_fc02_SIM | | 000_20000101_1_ASIM | | 5000_20000101_fc1_2_SIM.

000_20010101_60_2_SIM | | 200020010101 1_ASIM | | 2000 20010101_fe1_2_SIM

L~

.

[~

!

000_20000101_fc0_3 SIM | | 00020000101 2_ASIM | | 5000_20000101_fc1_3_SIM

000_20010101_60_3 SIM | | 200020010101 2_ASIM | | 2000 20010101_fe1_3_SIM

v
000_20000101_3_ASIM.

T~

/

2000_20010101_3_ASIM.

_images/group_date.png
UNKNOWN

WAITING

READY

a013_LOCAL_SETUP

Z&

| 20000101 20000202

QUEUING

_images/group_member.png
UNKNOWN WAITING READY - QUEUING

a013_LOCAL_SETUP

/\\.

20000101_fcO | 20000101 _fc1 20000202_fcO 20000202_fcl

_images/monarch-da.png

_images/monarch-da1.png
'
I

! lCompIeted horizontal
12

'

! lCompIeted horizontal
'

13

'

! lCompIeted horizontal
I

_images/monarch-da2.png
'
I

! lCompIeted horizontal
12

'

! lCompIeted horizontal
'

13

'

! lCompIeted horizontal
I

_images/no-synchronize.png
[[

00, 20000101 e 1N

v
00.2000001 0.1 514

AN

0 2000010111 NI

]

00.20000101 1.

AN

00, 201001 e

v
0020010101 01500

AN

00, 20100111

v
0020010101 11504

AN

020000101 tc0. a5t | [0 00101 10 2 50

a0 200001011 1 st | [5000 20101 1 250

000,20010101 0. 1ASIM.

00,2010101 0.2 514

a0 20010101 se1_1_asn | [e woron0 e 2 s

A

~,

—

N,

N\

AR

0 20000100 2 ASIN

0 20000100 3 514

002000001 e1.2 ASIM.

00,2000001 13 514

0 00101 c0.2 st | [0 wor0101 103 s <0 2001010111 2 a5 | [5000 20101 113 s

!

000,2000001 0.3 ASIN.

]

]

0 200001013 ASIN

00 2001010103 ASIN

!

00.20010101 13 ASIN.

_images/pre_grouping_workflow.png
) () () (] (o) D)| O)

a1 L0cAL SETUY,

.

1520000100 N1 015 20000101 1N 013 20000202 k0 N1 015 2000002 LN
015 200001010 511 015 20000101 1115t 015 20000202 01 514 013 20000202 11511
o wmnor a1 7ot | 015 20000100 25041 ars 20000101 se1post | (o svonon 125 a5 200020 s post | [oz o2 smi wars 200020 i1 1vose | s 000z e 2 5o

/ N\ / /[1 1 | |

wars 200010 o e | [sonszomanar ko2 post | o awonon o s | [z000m0se1 1 cuan]| [som zooon i 2 vost | [2mooiwr e sson | [zomeans o v coman | [ar2moom o 2rost | [20momz eossm | [ns 2maomn st rcrman | [momae e 2vost | [son zavomzer s sme

! | [| l |) |

sans 2000010 s 2_curan | [13 20000101 10 3 post w13 20010 1 2 cean | [so1 000 ser post rs 200 w0 2.cuean | [s01 0002 0 5 vost aar3 20000202 12 crean | [0 02 e 3 vost

| | | |

015 2000010103 CLEAN 015 2000010111 3_CLEAN 015 2000020203 CLEAN 013 2000020 11 3_CLEAN

_images/new_dependencies_0.png

_images/new_dependencies_1.png

_images/running.png
S

a00e_19900101_Member2_member

a00e_19900101_Member1_member

|

WAITING

a00e_once

A J

a00e_19900101_date

A J

o

~,

QUEUING

a00e_20000101_date

a00e_20000101_Member1_member

/

~,

a00e_20000101_Member2_member

L

a00e_19900101_Member1_1_chunk

a00e_19900101_Memberl_2_chunk

a00e_19900101_Member2_1_chunk

a00e_19900101_Member2_2_chunk

a00e_20000101_Member1_1_chunk

a00e_20000101_Memberl_2_chunk

a00e_20000101_Member2_1_chunk

a00e_20000101_Member2_2_chunk

_images/select_chunks.png
59 LOCAL SETUP

4509 REMOTE SETUP.

59 19300101_00_1_POST
=

e 19s00101tean_1_ LA | [es 1980101 00 2 50

/
, I —

/ \
e e e

| N\

509 1900101 1e00 6 SIM | [eocomomn oo crean | [tosonot coo 4 cuan
T

>, | | |

\ / ~ |
/ — /\

w300 19300101100 7_pst | [e0_19w00101 1c00_5 st | [s5es_1omomion oo CLEAN
\ /

J
4509 19300101 600_5 POST

| | / {

|
\ s 1

> v
190 90, CLEAN MENBER

)
509 CLEAN_EXPERIMENT.

_images/profiler_output.png
Time & Calls Profiling

1091713 function calls (1081212 primitive calls) in 0.581 seconds

Ordered by: cumulative time

ncalls tottime percall cuntime percall filename:lineno(function)

1 .000 .000 .564 .564 autosubmit.py:1826(prepare_run
9 .000 .000 .484 .54 configcommon.py:1343(reload)
.000 .000 .470 .28 constructor.py:116(get_single_data
.000 .000 .467 .52 configcommon.py:1391(load_last_run
.000 .000 .463 .51 main.py:1059(load)
.000 .000 .446 -850 composer.py:68(get_single_node
.000 .000 .445 .849 composer . py:93(compose_document
2835/9 .010 .000 .445 .849 composer .py:111(compose_node
378/9 .004 .000 .444 .849 composer . py:199(compose_mapping_node:
.000 .000 .442 .442 job_list.py:2253(check_scripts
.000 .000 .441 .55 job.py:1647(check_script)
.000 .000 .439 .55 job.py:1432(update_parameters
.007 .000 .362 .000 parser.py:141(check_event

_images/profiler_snakeviz.png
Call stack

autosubmit py:1836(prepare_run)
0.406 5

N job_list. py:2253(check_scripts)
styte: | Icicle v 0.302s

Depth: 10 v

job.py:1647(check_script)
cutoff: | 1 /1000 v 03025

job.py:1432(update_parameters)
0.300s

composer.py:93(compose_document)

0.306 s
S —
nealls tottime percall cumtime percall
7 0.037 0.005285 0.037 0.005285 ~:0(<method 'commit’ of 'slite3.Connection’ objects>)
2259 0.02173 9.619e-06 0.06293 2.786e-05 scanner.py:1540(scan_plain)

38979 0.02043 5.241e-07 0.03817 9.793e-07 scanner.py:203(need_more_tokens)

_images/simple.png
WAITING

READY

a00e_One

a00e_Two

QUEUING

_images/skip.png
) [()) () (o) ([[

a3 weoon0n_seooo0 1 st | [021 1ocoo1on oo 2-sunt | [02 950010t scooo.3 sne ani ocsonn_ooo_ 15t | [0a_tsssoror eonoo 2_svt | [s 1o6soror_scooo 3 s

w001 seooo0 15t | [021 10101 oo 2-sivt | 02 9700101 scoo0.3 e

ani s ooor_1_so | [a_tsconnor eanor 2_svt | [1oaoror_scooo 3 s a0 sooor 1 s | [oai tossoron_tooor 2sine | [oa ossorot sconon 3 sie i oro0n01 oot 15 | 2 1omoror_sooor 2t | [0 700101 seovor 3 s

_images/select_members.png
'UNKNOWN

(] [pevee] o] [(] (Y

a03e_19600101_1_REDUCE_AN

QUEUING

SKIPPED

a03e_19600101_2 REDUCE_AN

a03e_19600101_03_REDUCE

_images/splits_1_to_1.png
00i INI

v
a00i_SIM

il I

a00i 2 ASIM

a00i_1_ASIM

00i 3 ASIM

!

00i 2 POST

00i_1_POST

00i_3 POST

_images/splits_1_to_n.png
a00i_1_TEST a00i 2 TEST
a00i_1_TEST2 a00i 3 TEST2

_images/split_group.png
UNKNOWN WATTING KEADY - SRR - - - -

a013_LOCAL_SETUP

v
a013_20000101_fc0