

Welcome to autosubmit’s documentation!

	Changelog
	Configuration changes

	Examples

	DEPENDENCIES

	Introduction
	What is Autosubmit ?

	Why is Autosubmit needed ?

	How does Autosubmit work ?

	Tutorial start guide
	Pre-requisites

	Description of most used commands

	Create a new experiment

	Run and monitoring:

	Configuration summary:

	Final step: Modify and run

	Developing a project
	Expdef configuration

	Autosubmit configuration

	Jobs configuration

	Platform configuration

	Proj configuration

	Installation
	How to install

	How to configure

	Examples

	Usage
	Command list

	Tutorials (How to)

	Defining the workflow
	Simple workflow

	Running jobs once per startdate, member or chunk

	Dependencies

	Job frequency

	Job synchronize

	Job split

	Job delay

	Frequent Questions and Answers

	Troubleshooting
	How to change the job status stopping autosubmit

	How to change the job status without stopping autosubmit

	My project parameters are not being substituted in the templates

	Unable to recover remote logs files.

	Error on create caused by a configuration parsing error

	Other possible errors

	Error codes and solutions
	Experiment Locked - Critical Error 7000

	Database Issues - Critical Error codes [7001-7005]

	Wrong User Input - Critical Error codes [7010-7030]

	Platform issues - Critical Error codes. Local [7040-7050] and remote [7050-7060]

	Uncatalogued codes - Critical Error codes [7060+]

	Minor errors - Error codes [6000+]

	Developing a project

	Variables reference
	Job variables

	Platform variables

	Project variables

	Performance Metrics

	Module documentation
	autosubmit

	autosubmit.config

	autosubmit.database

	autosubmit.git

	autosubmit.job

	autosubmit.monitor

	autosubmit.platform

	Autosubmit GUI
	Autosubmit GUI Main Page

Changelog

This page shows the main changes from AS3 to AS4.

Mayor mentions:

	Python version has changed to 3.7.3 instead of 2.7.

	Configuration language has changed to YAML.

	All parameters are now unified into a single dictionary.

	All sections are now uppercase.

	All parameters, except for job related ones, have now an hierarchy.

	An special key, FOR:, has been added. This key allows to create multiple jobs with almost the same configuration.

	The configuration of autosubmit is now more flexible.

	New command added, updateproj. This command will update all the scripts and autosubmit configuration.

	Wrapper definition has changed.

	Tasks dependencies system has changed.

Warning

updateproj may not translate all the scripts, we recommend to revise your scripts before run AS.

Configuration changes

Now autosubmit is composed by two kind of YAML configurations, the default ones, which are the same as always, and the custom ones.

The custom ones, allows to define custom configurations that will override the default ones, in order to do this, you only have to put the key in the custom configuration file.
These custom ones, can be anywhere and have any name, by default they’re inside <expid>/conf but you can change this path in the expdef.yml file. DEFAULT.CUSTOM_CONFIG_DIR

Additionally, you must be aware of the following changes:

	All sections keys are normalized to UPPERCASE, while values remain as the user put. Beware of the scripts that relies on %CURRENT_HPCARCH% and variables that refer to a platform because they will be always in UPPERCASE. Normalize the script.

	To define a job, you must put them under the key jobs in any custom configuration file.

	To define a platform, you must put them under the key platforms in any custom configuration file.

	To define a loop, you must put the key “FOR” as the first key of the section.

	You can put any %placeholder% in the proj.conf and custom files, and also you can put %ROOTDIR% in the expdef.yml.

	All configuration is now based in an hierarchical structure, so to export a var, you must use the following syntax: %KEY.SUBKEY.SUBSUBKEY%. The same goes for override them.

	YAML has into account the type.

Examples

List of example with the new configuration and the structure as follows

$/autosubmit/a00q/conf$ ls
autosubmit_a00q.yml custom_conf expdef_a00q.yml jobs_a00q.yml platforms_a00q.yml
$/autosubmit/a00q/conf/custom_conf ls
more_jobs.yml

Configuration

autosubmit_expid.yml

config:
 AUTOSUBMIT_VERSION: 4.0.0b
 MAXWAITINGJOBS: '3000'
 TOTALJOBS: '3000'
 SAFETYSLEEPTIME: 0
 RETRIALS: '10'
mail:
 NOTIFICATIONS: 'False'
 TO: daniel.beltran@bsc.es

expdef_expid.yml

DEFAULT:
 EXPID: a02u
 HPCARCH: local
 CUSTOM_CONFIG_DIR: %ROOTDIR%/conf/custom_conf
experiment:
 DATELIST: '20210811'
 MEMBERS: CompilationEfficiency HardwareBenchmarks WeakScaling StrongScaling
 CHUNKSIZEUNIT: hour
 CHUNKSIZE: '6'
 NUMCHUNKS: '2'
 CALENDAR: standard
rerun:
 RERUN: 'FALSE'
 CHUNKLIST: ''
project:
 PROJECT_TYPE: local
 PROJECT_DESTINATION: r_test
git:
 PROJECT_ORIGIN: https://earth.bsc.es/gitlab/ces/automatic_performance_profiling.git
 PROJECT_BRANCH: autosubmit-makefile1
 PROJECT_COMMIT: ''
svn:
 PROJECT_URL: ''
 PROJECT_REVISION: ''
local:
 PROJECT_PATH: /home/dbeltran/r_test
project_files:
 FILE_PROJECT_CONF: ''
 FILE_JOBS_CONF: ''

jobs_expid.yml

JOBS:
 LOCAL_SETUP:
 FILE: LOCAL_SETUP.sh
 PLATFORM: LOCAL
 RUNNING: "once"
 REMOTE_SETUP:
 FILE: REMOTE_SETUP.sh
 DEPENDENCIES: LOCAL_SETUP
 WALLCLOCK: '00:05'
 RUNNING: once
 NOTIFY_ON: READY SUBMITTED QUEUING COMPLETED
 INI:
 FILE: INI.sh
 DEPENDENCIES: REMOTE_SETUP
 RUNNING: member
 WALLCLOCK: '00:05'
 NOTIFY_ON: READY SUBMITTED QUEUING COMPLETED

 SIM:
 FOR:
 NAME: [20,40,80]
 PROCESSORS: [2,4,8]
 THREADS: [1,1,1]
 DEPENDENCIES: [INI SIM_20-1 CLEAN-2, INI SIM_40-1 CLEAN-2, INI SIM_80-1 CLEAN-2]
 NOTIFY_ON: READY SUBMITTED QUEUING COMPLETED

 FILE: SIM.sh
 DEPENDENCIES: INI SIM_20-1 CLEAN-2
 RUNNING: chunk
 WALLCLOCK: '00:05'
 TASKS: '1'
 NOTIFY_ON: READY SUBMITTED QUEUING COMPLETED

 POST:
 FOR:
 NAME: [20,40,80]
 PROCESSORS: [20,40,80]
 THREADS: [1,1,1]
 DEPENDENCIES: [SIM_20 POST_20-1,SIM_40 POST_40-1,SIM_80 POST_80-1]
 FILE: POST.sh
 RUNNING: chunk
 WALLCLOCK: '00:05'
 CLEAN:
 FILE: CLEAN.sh
 DEPENDENCIES: POST_20 POST_40 POST_80
 RUNNING: chunk
 WALLCLOCK: '00:05'
 TRANSFER:
 FILE: TRANSFER.sh
 PLATFORM: LOCAL
 DEPENDENCIES: CLEAN
 RUNNING: member

platforms_expid.yml

Platforms:
 MaReNoStRuM4:
 TYPE: slurm
 HOST: bsc
 PROJECT: bsc32
 USER: bsc32070
 QUEUE: debug
 SCRATCH_DIR: /gpfs/scratch
 ADD_PROJECT_TO_HOST: False
 MAX_WALLCLOCK: '48:00'
 USER_TO: pr1enx13
 TEMP_DIR: ''
 SAME_USER: False
 PROJECT_TO: pr1enx00
 HOST_TO: bscprace
 marenostrum_archive:
 TYPE: ps
 HOST: dt02.bsc.es
 PROJECT: bsc32
 USER: bsc32070
 SCRATCH_DIR: /gpfs/scratch
 ADD_PROJECT_TO_HOST: 'False'
 TEST_SUITE: 'False'
 USER_TO: pr1enx13
 TEMP_DIR: /gpfs/scratch/bsc32/bsc32070/test_migrate
 SAME_USER: false
 PROJECT_TO: pr1enx00
 HOST_TO: transferprace
 transfer_node:
 TYPE: ps
 HOST: dt01.bsc.es
 PROJECT: bsc32
 USER: bsc32070
 ADD_PROJECT_TO_HOST: false
 SCRATCH_DIR: /gpfs/scratch
 USER_TO: pr1enx13
 TEMP_DIR: /gpfs/scratch/bsc32/bsc32070/test_migrate
 SAME_USER: false
 PROJECT_TO: pr1enx00
 HOST_TO: transferprace
 transfer_node_bscearth000:
 TYPE: ps
 HOST: bscearth000
 USER: dbeltran
 PROJECT: Earth
 ADD_PROJECT_TO_HOST: false
 QUEUE: serial
 SCRATCH_DIR: /esarchive/scratch
 USER_TO: dbeltran
 TEMP_DIR: ''
 SAME_USER: true
 PROJECT_TO: Earth
 HOST_TO: bscpraceearth000
 bscearth000:
 TYPE: ps
 HOST: bscearth000
 USER: dbeltran
 PROJECT: Earth
 ADD_PROJECT_TO_HOST: false
 QUEUE: serial
 SCRATCH_DIR: /esarchive/scratch
 nord3:
 TYPE: SLURM
 HOST: nord1.bsc.es
 PROJECT: bsc32
 USER: bsc32070
 QUEUE: debug
 SCRATCH_DIR: /gpfs/scratch
 MAX_WALLCLOCK: '48:00'
 USER_TO: pr1enx13
 TEMP_DIR: ''
 SAME_USER: true
 PROJECT_TO: pr1enx00
 ecmwf-xc40:
 TYPE: ecaccess
 VERSION: pbs
 HOST: cca
 USER: c3d
 PROJECT: spesiccf
 ADD_PROJECT_TO_HOST: false
 SCRATCH_DIR: /scratch/ms
 QUEUE: np
 SERIAL_QUEUE: ns
 MAX_WALLCLOCK: '48:00'

custom_conf/more_jobs.yml

jobs:
 Additional_job_1:
 FILE: extrajob.sh
 DEPENDENCIES: POST_20
 RUNNING: once
 additional_job_2:
 FILE: extrajob.sh
 RUNNING : once

Wrappers definition

To define a the wrappers:

wrappers:
 wrapper_sim20:
 TYPE: "vertical"
 JOBS_IN_WRAPPER: "SIM_20"
 wrapper_sim40:
 TYPE: "vertical"
 JOBS_IN_WRAPPER: "SIM_40"

Loops definition

To define a loop, you need to use the FOR key and also the NAME key.

In order to generate the following jobs:

POST_20:
 FILE: POST.sh
 RUNNING: chunk
 WALLCLOCK: '00:05'
 PROCESSORS: 20
 THREADS: 1
 DEPENDENCIES: SIM_20 POST_20-1
POST_40:
 FILE: POST.sh
 RUNNING: chunk
 WALLCLOCK: '00:05'
 PROCESSORS: 40
 THREADS: 1
 DEPENDENCIES: SIM_40 POST_40-1
POST_80:
 FILE: POST.sh
 RUNNING: chunk
 WALLCLOCK: '00:05'
 PROCESSORS: 80
 THREADS: 1
 DEPENDENCIES: SIM_80 POST_80-1

One can use now the following configuration:

POST:
 FOR:
 NAME: [20,40,80]
 PROCESSORS: [20,40,80]
 THREADS: [1,1,1]
 DEPENDENCIES: [SIM_20 POST_20-1,SIM_40 POST_40-1,SIM_80 POST_80-1]
 FILE: POST.sh
 RUNNING: chunk
 WALLCLOCK: '00:05'

Warning

Only the parameters that changes must be included inside the FOR key.

DEPENDENCIES

The DEPENDENCIES key is used to define the dependencies of a job. It can be used in the following ways:

	Basic: The dependencies are a list of jobs, separated by ” “, that runs before the current task is submitted.

	
	New: The dependencies is a list of YAML sections, separated by “n”, that runs before the current job is submitted.

	
	
	For each dependency section, you can designate the following keywords to control the current job-affected tasks:

	
	DATES_FROM: Selects the job dates that you want to alter.

	MEMBERS_FROM: Selects the job members that you want to alter.

	CHUNKS_FROM: Selects the job chunks that you want to alter.

	
	For each dependency section and *_FROM keyword, you can designate the following keywords to control the destination of the dependency:

	
	DATES_TO: Links current selected tasks to the dependency tasks of the dates specified.

	MEMBERS_TO: Links current selected tasks to the dependency tasks of the members specified.

	CHUNKS_TO: Links current selected tasks to the dependency tasks of the chunks specified.

	
	Important keywords for [DATES|MEMBERS|CHUNKS]_TO:

	
	“natural”: Will keep the default linkage.

	“all”: Will link selected tasks of the dependency with current selected tasks.

	“none”: Will unlink selected tasks of the dependency with current selected tasks.

For the new format, consider that the priority is hierarchy and goes like this DATES_FROM -(includes)-> MEMBERS_FROM -(includes)-> CHUNKS_FROM.

	You can define a DATES_FROM inside the DEPENDENCY.

	You can define a MEMBERS_FROM inside the DEPENDENCY and DEPENDENCY.DATES_FROM.

	You can define a CHUNKS_FROM inside the DEPENDENCY, DEPENDENCY.DATES_FROM, DEPENDENCY.MEMBERS_FROM, DEPENDENCY.DATES_FROM.MEMBERS_FROM

For the examples, we will consider that our experiment has the following configuration:

EXPERIMENT:
 DATELIST: 202201[01-02]
 MEMBERS: FC1 FC2
 NUMCHUNKS: 4

Basic

JOBS:
 JOB_1:
 FILE: job1.sh
 RUNNING: chunk
 JOB_2:
 FILE: job2.sh
 DEPENDENCIES: JOB_1
 RUNNING: chunk
 JOB_3:
 FILE: job3.sh
 DEPENDENCIES: JOB_2
 RUNNING: chunk
 SIM:
 FILE: sim.sh
 DEPENDENCIES: JOB_3 SIM-1
 RUNNING: chunk
 POST:
 FILE: post.sh
 DEPENDENCIES: SIM
 RUNNING: chunk
 TEST:
 FILE: test.sh
 DEPENDENCIES: POST
 RUNNING: chunk

New format

JOBS:
 JOB_1:
 FILE: job1.sh
 RUNNING: chunk
 JOB_2:
 FILE: job2.sh
 DEPENDENCIES:
 JOB_1:
 dates_to: "natural"
 members_to: "natural"
 chunks_to: "natural"
 RUNNING: chunk
 JOB_3:
 FILE: job3.sh
 DEPENDENCIES:
 JOB_2:
 dates_to: "natural"
 members_to: "natural"
 chunks_to: "natural"
 RUNNING: chunk
 SIM:
 FILE: sim.sh
 DEPENDENCIES:
 JOB_3:
 dates_to: "natural"
 members_to: "natural"
 chunks_to: "natural"
 SIM-1:
 dates_to: "natural"
 members_to: "natural"
 chunks_to: "natural"
 RUNNING: chunk
 POST:
 FILE: post.sh
 DEPENDENCIES:
 SIM:
 dates_to: "natural"
 members_to: "natural"
 chunks_to: "natural"
 RUNNING: chunk
 TEST:
 FILE: test.sh
 DEPENDENCIES:
 POST:
 dates_to: "natural"
 members_to: "natural"
 chunks_to: "natural"
 RUNNING: chunk

Example 1: New format with specific dependencies

JOBS:
 JOB_1:
 FILE: job1.sh
 RUNNING: chunk
 JOB_2:
 FILE: job2.sh
 DEPENDENCIES:
 JOB_1:
 dates_to: "natural"
 members_to: "natural"
 chunks_to: "natural"
 RUNNING: chunk
 JOB_3:
 FILE: job3.sh
 DEPENDENCIES:
 JOB_2:
 dates_to: "natural"
 members_to: "natural"
 chunks_to: "natural"
 RUNNING: chunk
 SIM:
 FILE: sim.sh
 DEPENDENCIES:
 JOB_3:
 SIM-1:
 SIM:
 MEMBERS_FROM:
 FC2:
 CHUNKS_FROM:
 1:
 dates_to: "all"
 members_to: "FC1"
 chunks_to: "4"
 RUNNING: chunk
 POST:
 FILE: post.sh
 DEPENDENCIES:
 SIM:
 RUNNING: chunk
 TEST:
 FILE: test.sh
 DEPENDENCIES:
 POST:
 members_to: "FC2"
 chunks_to: 4
 RUNNING: once

too add img

Introduction

What is Autosubmit ?

Autosubmit is a python-based workflow manager to create, manage and monitor experiments by using Computing Clusters, HPC’s and Supercomputers remotely via ssh. It has support for experiments running in more than one HPC and for different workflow configurations.
Autosubmit is currently used at Barcelona Supercomputing Centre (BSC) to run models (EC-Earth, MONARCH, NEMO, CALIOPE, HERMES...), operational toolchains (S2S4E), data-download workflows (ECMWF MARS), and many other.
Autosubmit has been used to manage models running at supercomputers in BSC, ECMWF, IC3, CESGA, EPCC, PDC and OLCF.
Autosubmit is now available via PyPi package under the terms of GNU General Public License.

Get involved or contact us:

	GitLab:

	https://earth.bsc.es/gitlab/es/autosubmit

	Mail:

	support-autosubmit@bsc.es

Why is Autosubmit needed ?

Autosubmit is the only existing tool that satisfies the following requirements from the weather and climate community:

	Automatisation Job submission to machines and dependencies between jobs are managed by Autosubmit. No user intervention is needed.

	Data provenance Assigns unique identifiers for each experiment and stores information about model version, experiment configuration and computing facilities used in the whole process.

	Failure tolerance Automatic retrials and ability to rerun chunks in case of corrupted or missing data.

	Resource management Autosubmit manages supercomputer particularities, allowing users to run their experiments in the available machine without having to adapt the code. Autosubmit also allows to submit tasks from the same experiment to different platforms.

How does Autosubmit work ?

You can find help about how to use autosubmit and a list of available commands, just executing:

autosubmit -h

Execute autosubmit <command> -h for detailed help for each command:

autosubmit expid -h

Experiment creation

To create a new experiment, run the command:

autosubmit expid -H HPCname -d Description

HPCname is the name of the main HPC platform for the experiment: it will be the default platform for the tasks.
Description is a brief experiment description.

This command assigns a unique four character identifier (xxxx, names starting from a letter, the other three characters) to the experiment and creates a new folder in experiments repository with structure shown in Figure 1.

[image: experiment folder]

1 Example of an experiment directory tree.

Experiment configuration

To configure the experiment, edit expdef_xxxx.conf, jobs_xxxx.conf and platforms_xxxx.conf in the conf folder of the experiment (see contents in Figure 2).

[image: configuration files]

2 Configuration files content

After that, you are expected to run the command:

autosubmit create xxxx

This command creates the experiment project in the proj folder. The experiment project contains the scripts specified in jobs_xxxx.conf and a copy of model source code and data specified in expdef_xxxx.conf.

Experiment run

To run the experiment, just execute the command:

autosubmit run xxxx

Autosubmit will start submitting jobs to the relevant platforms (both HPC and supporting computers) by using the scripts specified in jobs_xxxx.conf. Autosubmit will substitute variables present on scripts where handlers appear in %variable_name% format. Autosubmit provides variables for current chunk, start date, member, computer configuration and more, and also will replace variables form proj_xxxx.conf.

To monitor the status of the experiment, the command:

autosubmit monitor xxxx

is available. This will plot the workflow of the experiment and the current status.

[image: experiment plot]

3 Example of monitoring plot for EC-Earth run with Autosubmit for 1 start date, 1 member and 3 chunks.

Tutorial start guide

This tutorial is a starter’s guide to running a dummy experiment with Autosubmit.

Dummy experiments run workflows with non-expensive empty tasks and therefore are ideal for teaching and testing purposes.

Real experiments instead run workflows with complex tasks. To read information about how to develop parameterizable tasks for Autosubmit workflows, refer to Developing a project.

Pre-requisites

Autosubmit needs to establish password-less SSH connections in order to run and monitor workflows on remote platforms.

Ensure that you have a password-less connection to all platforms you want to use in your experiment. If you are unsure how to do this, please follow these instructions:

	Open a terminal and prompt `ssh-keygen -t rsa -b 4096 -C "email@email.com" -m PEM`

	Copy the resulting key to your platform of choice. Via SCP or ssh-copy-key.

Description of most used commands

	Command

	Short description

	expid

	Creates a new experiment and generates a new entry in the database by giving it a serial id composed of 4 letters. In addition, it also creates the folder experiment and the basic folder structure.

	create <expid>

	Generates the experiment workflow.

	run <expid>

	Euns the experiment workflow.

	monitor <expid>

	Shows the experiment workflow structure and status.

	inspect <expid>

	Generates Autosubmit scripts and batch scripts for inspection, by processing the tasks’ templates with the experiment parameters.

	refresh <expid>

	Updates the project directory.

	recovey <expid>

	Recovers the experiment workflow obtaining the last run complete jobs.

	setstatus <expid>

	Sets one or multiple jobs status to a given value.

Create a new experiment

autosubmit expid -dm -H "local" -d "Tutorial"

	-dm: Generates a dummy experiment.

	-H: Sets the principal experiment platform.

	-d: Sets a short description for the experiment.

The output of the command will show the expid of the experiment and generate the following directory structure:

	Experiment folder

	Contains

	conf

	Experiment configuration files.

	pkl

	Workflow pkl files.

	plot

	Visualization output files

	tmp

	Logs, templates and misc files.

	proj

	User scripts and project code. (empty)

Then, prompt autosubmit create <expid> -np and Autosubmit will generate the workflow graph.

Run and monitoring:

To run an experiment, use `autosubmit run <expid>`. Autosubmit run experiments performing the following operations:

	First, it checks the experiment configuration. If it is wrong, it won’t proceed further.

	Second, it runs the experiment while retrieving all logs from completed or failed tasks as they run.

	Third, it manages all the workflow steps by following the dependencies defined by the user until all jobs are in COMPLETED or FAILED status. There can be jobs left in WAITING status if their dependencies are in FAILED status.

While the experiment is running, it can be visualized via autosubmit monitor <expid>.

[image: experiment_view]

illustrates the output of the autosubmit monitor. It describes all workflow jobs’ possible status and actual status.

At the same time, the <expid>/tmp gets filled with the cmd scripts generated by Autosubmit to run the local and remote tasks (in this case, they are sent and submitted to the remote platform(s)).

On the other hand, the ASLOGS and LOG_a000 folders are filling up with AS command logs and jobs logs.

Configuration summary:

In the folder <expid>/conf there are different files that define the actual experiment configuration.

	File

	Content

	expdef.conf

	
	It contains the default platform, the one set with -H.

	Allows changing the start dates, members and chunks.

	Allows changing the experiment project source (git, local, svn or dummy)

	platforms.conf

	
	It contains the list of platforms to use in the experiment.

	This file contains the definitions for managing clusters, fat-nodes and support computers.

	This file must be filled-up with the platform(s) configuration(s).

	Several platforms can be defined and used in the same experiment.

	jobs.conf

	
	It contains the tasks’ definitions in sections. Depending on the parameters, one section can generate multiple similar tasks.

	This file must be filled-up with the tasks’ definitions.

	Several sections can be defined and used in the same experiment.

	autosubmit.conf

	
	This file contains the definitions that impact the workflow behavior.

	It changes workflow behavior with parameters such as job limitations, remote_dependendies and retrials.

	It extends autosubmit functionalities with parameters such as wrappers and mail notification.

	proj.conf

	
	This file contains the configuration used by the user scripts.

	This file is fully customizable for the current experiment. Allows setting user- parameters that will be readable by the autosubmit jobs.

Final step: Modify and run

It is time to look into the configuration files of the dummy experiment and modify them with a remote platform to run a workflow with a few more chunks.

Open expdef.conf

[DEFAULT]
EXPID = a000 #<- don't change
HPCARCH = local # Change for your new main platform name, ej. marenostrum4

Locate and change these parameters, per ej. numchunks = 3
[experiment]
DATELIST = 20000101
MEMBERS = fc0
NUMCHUNKS = 1
(...)

Now open platforms.conf. Note: This will be an example for marenostrum4

[marenostrum4]
Queue type. Options: ps, SGE, LSF, SLURM, PBS, eceaccess
TYPE = slurm # scheduler type
HOST = mn1.bsc.es,mn2.bsc.es,mn3.bsc.es
PROJECT = bsc32 # <- your project
USER = bsc32070 # <- your user
SCRATCH_DIR = /gpfs/scratch
ADD_PROJECT_TO_HOST = False
use 72:00 if you are using a PRACE account, 48:00 for the bsc account
MAX_WALLCLOCK = 02:00
use 19200 if you are using a PRACE account, 2400 for the bsc account
MAX_PROCESSORS = 2400
PROCESSORS_PER_NODE = 48
SERIAL_QUEUE = debug
QUEUE = debug

autosubmit create <expid>** (without -np) will generate the new workflow and autosubmit run <expid> will run the experiment with the latest changes.

Developing a project

This section contains some examples on how to develop a new project.

All files, with the exception of user-defined scripts, are located in the <expid>/conf directory.

Configuration files are written in ini format. In the other hand, the user-defined scripts are written in bash/python or R format.

To configure the experiment, edit autosubmit_cxxx.conf, expdef_cxxx.conf, jobs_cxxx.conf , platforms_cxxx.conf and proj_cxxx.conf` in the conf folder of the experiment.

Expdef configuration

vi <experiments_directory>/cxxx/conf/expdef_cxxx.conf

[DEFAULT]
Experiment identifier
No need to change
EXPID = cxxx
HPC name.
No need to change
HPCARCH = ithaca

[experiment]
Supply the list of start dates. Available formats: YYYYMMDD YYYYMMDDhh YYYYMMDDhhmm
Also you can use an abbreviated syntax for multiple dates with common parts:
200001[01 15] <=> 20000101 20000115
DATELIST = 19600101 19650101 19700101
DATELIST = 1960[0101 0201 0301]
DATELIST = 19900101
Supply the list of members. LIST = fc0 fc1 fc2 fc3 fc4
MEMBERS = fc0
Chunk size unit. STRING = hour, day, month, year
CHUNKSIZEUNIT = month
Chunk size. NUMERIC = 4, 6, 12
CHUNKSIZE = 1
Total number of chunks in experiment. NUMERIC = 30, 15, 10
NUMCHUNKS = 2
Calendar used. LIST: standard, noleap
CALENDAR = standard
List of members that can be included in this run. Optional.
RUN_ONLY_MEMBERS = fc0 fc1 fc2 fc3 fc4
RUN_ONLY_MEMBERS = fc[0-4]
RUN_ONLY_MEMBERS =

[rerun]
Is a rerun or not? [Default: Do set FALSE]. BOOLEAN = TRUE, FALSE
RERUN = FALSE
If RERUN = TRUE then supply the list of jobs to rerun
RERUN_JOBLIST =

[project]
Select project type. STRING = git, svn, local, none
If PROJECT_TYPE is set to none, Autosubmit self-contained dummy templates will be used
PROJECT_TYPE = git
Destination folder name for project. type = STRING, default = leave empty,
PROJECT_DESTINATION = model

If PROJECT_TYPE is not git, no need to change
[git]
Repository URL STRING = 'https://github.com/torvalds/linux.git'
PROJECT_ORIGIN = https://gitlab.cfu.local/cfu/auto-ecearth3.git
Select branch or tag, STRING, default = 'master',
help = {'master' (default), 'develop', 'v3.1b', ...}
PROJECT_BRANCH = develop
type = STRING, default = leave empty, help = if model branch is a TAG leave empty
PROJECT_COMMIT =

If PROJECT_TYPE is not svn, no need to change
[svn]
type = STRING, help = 'https://svn.ec-earth.org/ecearth3'
PROJECT_URL =
Select revision number. NUMERIC = 1778
PROJECT_REVISION =

If PROJECT_TYPE is not local, no need to change
[local]
type = STRING, help = /foo/bar/ecearth
PROJECT_PATH =

If PROJECT_TYPE is none, no need to change
[project_files]
Where is PROJECT CONFIGURATION file location relative to project root path
FILE_PROJECT_CONF = templates/ecearth3/ecearth3.conf
Where is JOBS CONFIGURATION file location relative to project root path
FILE_JOBS_CONF = templates/common/jobs.conf

Autosubmit configuration

vi <experiments_directory>/cxxx/conf/autosubmit_cxxx.conf

[config]
Experiment identifier
No need to change
EXPID =
No need to change.
Autosubmit version identifier
AUTOSUBMIT_VERSION =
Default maximum number of jobs to be waiting in any platform
Default = 3
MAXWAITINGJOBS = 3
Default maximum number of jobs to be running at the same time at any platform
Can be set at platform level on the platform_cxxx.conf file
Default = 6
TOTALJOBS = 6
Time (seconds) between connections to the HPC queue scheduler to poll already submitted jobs status
Default = 10
SAFETYSLEEPTIME = 10
Number of retrials if a job fails. Can ve override at job level
Default = 0
RETRIALS = 0
Allows to put a delay between retries, of retrials if a job fails. If not specified, it will be static
DELAY_RETRY_TIME = 11
DELAY_RETRY_TIME = +11 # will wait 11,22,33,44...
DELAY_RETRY_TIME = *11 # will wait 11,110,1110,11110...
Default output type for CREATE, MONITOR, SET STATUS, RECOVERY. Available options: pdf, svg, png, ps, txt
Default = pdf
OUTPUT = pdf
[wrappers]

Jobs configuration

vi <experiments_directory>/cxxx/conf/jobs_cxxx.conf

Example job with all options specified

Job name
[JOBNAME]
Script to execute. If not specified, job will be omitted from workflow.
Path relative to the project directory
FILE =
Platform to execute the job. If not specified, defaults to HPCARCH in expedf file.
LOCAL is always defined and refers to current machine
PLATFORM =
Queue to add the job to. If not specified, uses PLATFORM default.
QUEUE =
Defines dependencies from job as a list of parents jobs separated by spaces.
Dependencies to jobs in previous chunk, member o startdate, use -(DISTANCE)
DEPENDENCIES = INI SIM-1 CLEAN-2
Define if jobs runs once, once per stardate, once per member or once per chunk. Options: once, date, member, chunk.
If not specified, defaults to once
RUNNING = once
Specifies that job has only to be run after X dates, members or chunk. A job will always be created for the last
If not specified, defaults to 1
FREQUENCY = 3
On a job with FREQUENCY > 1, if True, the dependencies are evaluated against all
jobs in the frequency interval, otherwise only evaluate dependencies against current
iteration.
If not specified, defaults to True
WAIT = False
Defines if job is only to be executed in reruns. If not specified, defaults to false.
RERUN_ONLY = False
Wallclock to be submitted to the HPC queue in format HH:MM
WALLCLOCK = 00:05

Processors number to be submitted to the HPC. If not specified, defaults to 1.
Wallclock chunk increase (WALLCLOCK will be increased according to the formula WALLCLOCK + WCHUNKINC * (chunk - 1)).
Ideal for sequences of jobs that change their expected running time according to the current chunk.
WCHUNKINC = 00:01
PROCESSORS = 1
Threads number to be submitted to the HPC. If not specified, defaults to 1.
THREADS = 1
Enables hyper-threading. If not specified, defaults to false.
HYPERTHREADING = false
Tasks number to be submitted to the HPC. If not specified, defaults to 1.
Tasks = 1
Memory requirements for the job in MB
MEMORY = 4096
Number of retrials if a job fails. If not specified, defaults to the value given on experiment's autosubmit.conf
RETRIALS = 4
Allows to put a delay between retries, of retrials if a job fails. If not specified, it will be static
DELAY_RETRY_TIME = 11
DELAY_RETRY_TIME = +11 # will wait 11,22,33,44...
DELAY_RETRY_TIME = *11 # will wait 11,110,1110,11110...
Some jobs can not be checked before running previous jobs. Set this option to false if that is the case
CHECK = False
Select the interpreter that will run the job. Options: bash, python, r Default: bash
TYPE = bash
Specify the path to the interpreter. If empty, use system default based on job type . Default: empty
EXECUTABLE = /my_python_env/python3

[LOCAL_SETUP]
FILE = LOCAL_SETUP.sh
PLATFORM = LOCAL

[REMOTE_SETUP]
FILE = REMOTE_SETUP.sh
DEPENDENCIES = LOCAL_SETUP
WALLCLOCK = 00:05

[INI]
FILE = INI.sh
DEPENDENCIES = REMOTE_SETUP
RUNNING = member
WALLCLOCK = 00:05

[SIM]
FILE = SIM.sh
DEPENDENCIES = INI SIM-1 CLEAN-2
RUNNING = chunk
WALLCLOCK = 00:05
PROCESSORS = 2
THREADS = 1

[POST]
FILE = POST.sh
DEPENDENCIES = SIM
RUNNING = chunk
WALLCLOCK = 00:05

[CLEAN]
FILE = CLEAN.sh
DEPENDENCIES = POST
RUNNING = chunk
WALLCLOCK = 00:05

[TRANSFER]
FILE = TRANSFER.sh
PLATFORM = LOCAL
DEPENDENCIES = CLEAN
RUNNING = member

Platform configuration

vi <experiments_directory>/cxxx/conf/platforms_cxxx.conf

Example platform with all options specified

Platform name
[PLATFORM]
Queue type. Options: PBS, SGE, PS, LSF, ecaccess, SLURM
TYPE =
Version of queue manager to use. Needed only in PBS (options: 10, 11, 12) and ecaccess (options: pbs, loadleveler)
VERSION =
Hostname of the HPC
HOST =
Project for the machine scheduler
PROJECT =
Budget account for the machine scheduler. If omitted, takes the value defined in PROJECT
BUDGET =
Option to add project name to host. This is required for some HPCs
ADD_PROJECT_TO_HOST = False
User for the machine scheduler
USER =
Path to the scratch directory for the machine
SCRATCH_DIR = /scratch
If true, autosubmit test command can use this queue as a main queue. Defaults to false
TEST_SUITE = False
If given, autosubmit will add jobs to the given queue
QUEUE =
If specified, autosubmit will run jobs with only one processor in the specified platform.
SERIAL_PLATFORM = SERIAL_PLATFORM_NAME
If specified, autosubmit will run jobs with only one processor in the specified queue.
Autosubmit will ignore this configuration if SERIAL_PLATFORM is provided
SERIAL_QUEUE = SERIAL_QUEUE_NAME
Default number of processors per node to be used in jobs
PROCESSORS_PER_NODE =
Default Maximum number of jobs to be waiting in any platform queue
Default = 3
MAX_WAITING_JOBS = 3
Default maximum number of jobs to be running at the same time at the platform.
Applies at platform level. Considers QUEUEING + RUNNING jobs.
Ideal for configurations where some remote platform has a low upper limit of allowed jobs per user at the same time.
Default = 6
TOTAL_JOBS = 6

[ithaca]
Queue type. Options: ps, SGE, LSF, SLURM, PBS, eceaccess
TYPE = SGE
HOST = ithaca
PROJECT = cfu
ADD_PROJECT_TO_HOST = true
USER = dbeltran
SCRATCH_DIR = /scratch/cfu
TEST_SUITE = True

Proj configuration

After filling the experiment configuration and promt autosubmit create cxxx -np create, user can go into proj which has a copy of the model.

The experiment project contains the scripts specified in jobs_cxxx.conf and a copy of model source code and data specified in expdef_xxxx.conf.

To configure experiment project parameters for the experiment, edit proj_cxxx.conf.

	proj_cxxx.conf contains:

	
	The project dependant experiment variables that Autosubmit will substitute in the scripts to be run.

Warning

The proj_xxxx.conf has to be defined in INI style so it should has section headers. At least one.

Example:

vi <experiments_directory>/cxxx/conf/proj_cxxx.conf

[common]
No need to change.
MODEL = ecearth
No need to change.
VERSION = v3.1
No need to change.
TEMPLATE_NAME = ecearth3
Select the model output control class. STRING = Option
listed under the section : https://earth.bsc.es/wiki/doku.php?id=overview_outclasses
OUTCLASS = specs
After transferring output at /cfunas/exp remove a copy available at permanent storage of HPC
[Default: Do set "TRUE"]. BOOLEAN = TRUE, FALSE
MODEL_output_remove = TRUE
Activate cmorization [Default: leave empty]. BOOLEAN = TRUE, FALSE
CMORIZATION = TRUE
Essential if cmorization is activated.
STRING = (http://www.specs-fp7.eu/wiki/images/1/1c/SPECS_standard_output.pdf)
CMORFAMILY =
Supply the name of the experiment associated (if there is any) otherwise leave it empty.
STRING (with space) = seasonal r1p1, seaiceinit r?p?
ASSOCIATED_EXPERIMENT =
Essential if cmorization is activated (Forcing). STRING = Nat,Ant (Nat and Ant is a single option)
FORCING =
Essential if cmorization is activated (Initialization description). STRING = N/A
INIT_DESCR =
Essential if cmorization is activated (Physics description). STRING = N/A
PHYS_DESCR =
Essential if cmorization is activated (Associated model). STRING = N/A
ASSOC_MODEL =

[grid]
AGCM grid resolution, horizontal (truncation T) and vertical (levels L).
STRING = T159L62, T255L62, T255L91, T511L91, T799L62 (IFS)
IFS_resolution = T511L91
OGCM grid resolution. STRING = ORCA1L46, ORCA1L75, ORCA025L46, ORCA025L75 (NEMO)
NEMO_resolution = ORCA025L75

[oasis]
Coupler (OASIS) options.
OASIS3 = yes
Number of pseudo-parallel cores for coupler [Default: Do set "7"]. NUMERIC = 1, 7, 10
OASIS_nproc = 7
Handling the creation of coupling fields dynamically [Default: Do set "TRUE"].
BOOLEAN = TRUE, FALSE
OASIS_flds = TRUE

[ifs]
Atmospheric initial conditions ready to be used.
STRING = ID found here : https://earth.bsc.es/wiki/doku.php?id=initial_conditions:atmospheric
ATM_ini =
A different IC member per EXPID member ["PERT"] or which common IC member
for all EXPID members ["fc0" / "fc1"]. String = PERT/fc0/fc1...
ATM_ini_member =
Set timestep (in sec) w.r.t resolution.
NUMERIC = 3600 (T159), 2700 (T255), 900 (T511), 720 (T799)
IFS_timestep = 900
Number of parallel cores for AGCM component. NUMERIC = 28, 100
IFS_nproc = 640
Coupling frequency (in hours) [Default: Do set "3"]. NUMERIC = 3, 6
RUN_coupFreq = 3
Post-processing frequency (in hours) [Default: Do set "6"]. NUMERIC = 3, 6
NFRP = 6
[Default: Do set "TRUE"]. BOOLEAN = TRUE, FALSE
LCMIP5 = TRUE
Choose RCP value [Default: Do set "2"]. NUMERIC = 0, 1=3-PD, 2=4.5, 3=6, 4=8.5
NRCP = 0
[Default: Do set "TRUE"]. BOOLEAN = TRUE, FALSE
LHVOLCA = TRUE
[Default: Do set "0"]. NUMERIC = 1850, 2005
NFIXYR = 0
Save daily output or not [Default: Do set "FALSE"]. BOOLEAN = TRUE, FALSE
SAVEDDA = FALSE
Save reduced daily output or not [Default: Do set "FALSE"]. BOOLEAN = TRUE, FALSE
ATM_REDUCED_OUTPUT = FALSE
Store grib codes from SH files [User need to refer defined ppt* files for the experiment]
ATM_SH_CODES =
Store levels against "ATM_SH_CODES" e.g: level1,level2,level3, ...
ATM_SH_LEVELS =
Store grib codes from GG files [User need to refer defined ppt* files for the experiment]
ATM_GG_CODES =
Store levels against "ATM_GG_CODES" (133.128, 246.128, 247.128, 248.128)
e.g: level1,level2,level3, ...
ATM_GG_LEVELS =
SPPT stochastic physics active or not [Default: set "FALSE"]. BOOLEAN = TRUE, FALSE
LSPPT = FALSE
Write the perturbation patterns for SPPT or not [Default: set "FALSE"].
BOOLEAN = TRUE, FALSE
LWRITE_ARP =
Number of scales for SPPT [Default: set 3]. NUMERIC = 1, 2, 3
NS_SPPT =
Standard deviations of each scale [Default: set 0.50,0.25,0.125]
NUMERIC values separated by ,
SDEV_SPPT =
Decorrelation times (in seconds) for each scale [Default: set 2.16E4,2.592E5,2.592E6]
NUMERIC values separated by ,
TAU_SPPT =
Decorrelation lengths (in meters) for each scale [Default: set 500.E3,1000.E3,2000.E3]
NUMERIC values separated by ,
XLCOR_SPPT =
Clipping ratio (number of standard deviations) for SPPT [Default: set 2] NUMERIC
XCLIP_SPPT =
Stratospheric tapering in SPPT [Default: set "TRUE"]. BOOLEAN = TRUE, FALSE
LTAPER_SPPT =
Top of stratospheric tapering layer in Pa [Default: set to 50.E2] NUMERIC
PTAPER_TOP =
Bottom of stratospheric tapering layer in Pa [Default: set to 100.E2] NUMERIC
PTAPER_BOT =
ATMOSPHERIC NUDGING PARAMETERS
Atmospheric nudging towards re-interpolated ERA-Interim data. BOOLEAN = TRUE, FALSE
ATM_NUDGING = FALSE
Atmospheric nudging reference data experiment name. [T255L91: b0ir]
ATM_refnud =
Nudge vorticity. BOOLEAN = TRUE, FALSE
NUD_VO =
Nudge divergence. BOOLEAN = TRUE, FALSE
NUD_DI =
Nudge temperature. BOOLEAN = TRUE, FALSE
NUD_TE =
Nudge specific humidity. BOOLEAN = TRUE, FALSE
NUD_Q =
Nudge liquid water content. BOOLEAN = TRUE, FALSE
NUD_QL =
Nudge ice water content. BOOLEAN = TRUE, FALSE
NUD_QI =
Nudge cloud fraction. BOOLEAN = TRUE, FALSE
NUD_QC =
Nudge log of surface pressure. BOOLEAN = TRUE, FALSE
NUD_LP =
Relaxation coefficient for vorticity. NUMERIC in]0,inf[;
1 means half way between model value and ref value
ALPH_VO =
Relaxation coefficient for divergence. NUMERIC in]0,inf[;
1 means half way between model value and ref value
ALPH_DI =
Relaxation coefficient for temperature. NUMERIC in]0,inf[;
1 means half way between model value and ref value
ALPH_TE =
Relaxation coefficient for specific humidity. NUMERIC in]0,inf[;
1 means half way between model value and ref value
ALPH_Q =
Relaxation coefficient for log surface pressure. NUMERIC in]0,inf[;
1 means half way between model value and ref value
ALPH_LP =
Nudging area Northern limit [Default: Do set "90"]
NUD_NLAT =
Nudging area Southern limit [Default: Do set "-90"]
NUD_SLAT =
Nudging area Western limit NUMERIC in [0,360] [Default: Do set "0"]
NUD_WLON =
Nudging area Eastern limit NUMERIC in [0,360] [Default: Do set "360"; E<W will span Greenwich]
NUD_ELON =
Nudging vertical levels : lower level [Default: Do set "1"]
NUD_VMIN =
Nudging vertical levels : upper level [Default: Do set to number of vertical levels]
NUD_VMAX =

[nemo]
Ocean initial conditions ready to be used. [Default: leave empty].
STRING = ID found here : https://earth.bsc.es/wiki/doku.php?id=initial_conditions:oceanic
OCEAN_ini =
A different IC member per EXPID member ["PERT"] or which common IC member
for all EXPID members ["fc0" / "fc1"]. String = PERT/fc0/fc1...
OCEAN_ini_member =
Set timestep (in sec) w.r.t resolution. NUMERIC = 3600 (ORCA1), 1200 (ORCA025)
NEMO_timestep = 1200
Number of parallel cores for OGCM component. NUMERIC = 16, 24, 36
NEMO_nproc = 960
Ocean Advection Scheme [Default: Do set "tvd"]. STRING = tvd, cen2
ADVSCH = cen2
Nudging activation. BOOLEAN = TRUE, FALSE
OCEAN_NUDGING = FALSE
Toward which data to nudge; essential if "OCEAN_NUDGING" is TRUE.
STRING = fa9p, s4, glorys2v1
OCEAN_NUDDATA = FALSE
Rebuild and store restarts to HSM for an immediate prediction experiment.
BOOLEAN = TRUE, FALSE
OCEAN_STORERST = FALSE

[ice]
Sea-Ice Model [Default: Do set "LIM2"]. STRING = LIM2, LIM3
ICE = LIM3
Sea-ice initial conditions ready to be used. [Default: leave empty].
STRING = ID found here : https://earth.bsc.es/wiki/doku.php?id=initial_conditions:sea_ice
ICE_ini =
A different IC member per EXPID member ["PERT"] or which common IC member
for all EXPID members ["fc0" / "fc1"]. String = PERT/fc0/fc1...
ICE_ini_member =
Set timestep (in sec) w.r.t resolution. NUMERIC = 3600 (ORCA1), 1200 (ORCA025)
LIM_timestep = 1200

[pisces]
Activate PISCES (TRUE) or not (FALSE) [Default: leave empty]
PISCES = FALSE
PISCES initial conditions ready to be used. [Default: leave empty].
STRING = ID found here : https://earth.bsc.es/wiki/doku.php?id=initial_conditions:biogeochemistry
PISCES_ini =
Set timestep (in sec) w.r.t resolution. NUMERIC = 3600 (ORCA1), 3600 (ORCA025)
PISCES_timestep = 3600

Proj configuration:: Full example

This section contains a full example of a valid proj file with a valid user script.

Configuration of proj.conf

vi <expid>/conf/proj_cxxx.conf

PROJECT_ROOT = /gpfs/scratch/bsc32/bsc32070/a000/automatic_perfomance_profile
REFRESH_GIT_REPO = false

Write your original script in the user project directory:

vi <expid>/proj/template/autosubmit/remote_setup.sh

cd %CURRENT_ROOTDIR% # This comes from autosubmit.
Clone repository to the remote for needed files
if exist or force refresh is true
if [! -d %PROJECT_ROOT%] || [%REFRESH_GIT_REPO% == true];
then
 chmod +w -R %PROJECT_ROOT% || :
 rm -rf %PROJECT_ROOT% || :
 git clone (...)
fi
(...)

Final script, which is generated by autosubmit run or autosubmit inspect

cat <experiments_directory>/cxxx/tmp/remote_setup.cmd

cd /gpfs/scratch/bsc32/bsc32070/a000
Clone repository to the remote for needed files
if exist or force refresh is true
if [! -d /gpfs/scratch/bsc32/bsc32070/a000/automatic_performance_profile] || [false == true];
then
 chmod +w -R /gpfs/scratch/bsc32/bsc32070/a000/automatic_performance_profile || :
 rm -rf /gpfs/scratch/bsc32/bsc32070/a000/automatic_performance_profile || :
 git clone (...)
fi
(...)

Detailed platform configuration

In this section, we describe the platform configuration using -QOS and also PARTITION

vi <expid>/conf/platform_cxxx.conf

[marenostrum0]
TYPE = ps
HOST = mn0.bsc.es
PROJECT = bsc32
USER = bsc32070
ADD_PROJECT_TO_HOST = false
SCRATCH_DIR = /gpfs/scratch

[marenostrum4]
Queue type. Options: ps, SGE, LSF, SLURM, PBS, eceaccess
TYPE = slurm
HOST = mn1.bsc.es,mn2.bsc.es,mn3.bsc.es
PROJECT = bsc32
USER = bsc32070
SCRATCH_DIR = /gpfs/scratch
ADD_PROJECT_TO_HOST = False
use 72:00 if you are using a PRACE account, 48:00 for the bsc account
MAX_WALLCLOCK = 02:00
use 19200 if you are using a PRACE account, 2400 for the bsc account
MAX_PROCESSORS = 2400
PROCESSORS_PER_NODE = 48
#SERIAL_QUEUE = debug
#QUEUE = debug
CUSTOM_DIRECTIVES = ["#SBATCH -p small", "#SBATCH --no-requeue", "#SBATCH --usage"]

[marenostrum_archive]
TYPE = ps
HOST = dt02.bsc.es
PROJECT = bsc32
USER = bsc32070
SCRATCH_DIR = /gpfs/scratch
ADD_PROJECT_TO_HOST = False
TEST_SUITE = False

[power9]
TYPE = slurm
HOST = plogin1.bsc.es
PROJECT = bsc32
USER = bsc32070
SCRATCH_DIR = /gpfs/scratch
ADD_PROJECT_TO_HOST = False
TEST_SUITE = False
SERIAL_QUEUE = debug
QUEUE = debug

[nord3]
TYPE = lsf
HOST = nord1.bsc.es
PROJECT = bsc32
USER = bsc32070
ADD_PROJECT_TO_HOST = False
SCRATCH_DIR = /gpfs/scratch
TEST_SUITE = False
MAX_WALLCLOCK = 48:00
MAX_PROCESSORS = 1024
PROCESSORS_PER_NODE = 16

[transfer_node]
TYPE = ps
HOST = dt01.bsc.es
PROJECT = bsc32
USER = bsc32070
ADD_PROJECT_TO_HOST = false
SCRATCH_DIR = /gpfs/scratch

[transfer_node_bscearth000]
TYPE = ps
HOST = bscearth000
USER = dbeltran
PROJECT = Earth
ADD_PROJECT_TO_HOST = false
QUEUE = serial
SCRATCH_DIR = /esarchive/scratch

[bscearth000]
TYPE = ps
HOST = bscearth000
PROJECT = Earth
USER = dbeltran
SCRATCH_DIR = /esarchive/scratch

Warning

The TYPE field is mandatory.
The HOST field is mandatory.
The PROJECT field is mandatory.
The USER field is mandatory.
The SCRATCH_DIR field is mandatory.
The ADD_PROJECT_TO_HOST field is mandatory.

Warning

The TEST_SUITE field is optional.
The MAX_WALLCLOCK field is optional.
The MAX_PROCESSORS field is optional.
The PROCESSORS_PER_NODE field is optional.

Warning

The SERIAL_QUEUE and QUEUE field are used for specify a -QOS.
For specify a partition, you must use CUSTOM_DIRECTIVES.
For specify the memory usage you must use MEMORY but only in jobs.conf.

The custom directives can be used for multiple parameters at the same time using the follow syntax.

vi <expid>/conf/platform_cxxx.conf

[puhti]
#Check your partition (test/small/large])
CUSTOM_DIRECTIVES = ["#SBATCH -p test", "#SBATCH --no-requeue", "#SBATCH --usage"]
Batch job system / queue at HPC
TYPE = slurm
Hostname of the HPC
HOST = puhti
Project name-ID at HPC (WEATHER)
PROJECT = project_test
User name at HPC
USER = dbeltran
Path to the scratch directory for the project at HPC
SCRATCH_DIR = /scratch
Should've false already, just in case it is not
ADD_PROJECT_TO_HOST = False

#Check your partition (test[00:15]/small[72:00]/large[72:00]) max_wallclock
MAX_WALLCLOCK = 00:15
[test [80] // small [40] // large [1040]
MAX_PROCESSORS = 80
test [40] / small [40] // large [40]
PROCESSORS_PER_NODE = 40

Installation

How to install

The Autosubmit code is maintained in PyPi, the main source for python packages.

	Pre-requisites: bash, python2, sqlite3, git-scm > 1.8.2, subversion, dialog, curl, python-tk(tkinter in centOS), python2-dev, graphviz >= 2.41, pip2

Important

(SYSTEM) Graphviz version must be >= 2.38 except 2.40(not working). You can check the version using dot -v.

	Python dependencies: argparse, python-dateutil, pyparsing, numpy, pydotplus, matplotlib, paramiko, python2-pythondialog, portalocker, requests, typing, six >= 1.10

Important

dot -v command should contain “dot”,pdf,png,svg,xlib in device section.

Important

The host machine has to be able to access HPC’s/Clusters via password-less ssh. Make sure that the ssh key is in PEM format ssh-keygen -t rsa -b 4096 -C “email@email.com” -m PEM.

To install autosubmit just execute:

pip install autosubmit

or download, unpack and:

python setup.py install

Hint

To check if autosubmit has been installed run autosubmit -v. This command will print autosubmit’s current
version

Hint

To read autosubmit’s readme file, run autosubmit readme

Hint

To see the changelog, use autosubmit changelog

How to configure

After installation, you have to configure database and path for Autosubmit.
In order to use the default settings, just create a directory called autosubmit in your home directory before running the configure command.
The experiments will be created in this folder, and the database named autosubmit.db in your home directory.

autosubmit configure

For advanced options you can add --advanced to the configure command. It will allow you to choose different directories (they must exist) for the experiments and database,
as well as configure SMTP server and an email account in order to use the email notifications feature.

autosubmit configure --advanced

Hint

The dialog (GUI) library is optional. Otherwise the configuration parameters
will be prompted (CLI). Use autosubmit configure -h to see all the allowed options.

For installing the database for Autosubmit on the configured folder, when no database is created on the given path, execute:

autosubmit install

Danger

Be careful ! autosubmit install will create a blank database.

Lastly, if autosubmit configure doesn’t work for you or you need to configure additional info create:

Create or modify /etc/autosubmitrc file or ~/.autosubmitrc with the information as follows:

[database]
path = path to autosubmit db
filename = autosubmit.db

[local]
path = path to experiment folders

[conf]
jobs = path to any experiment jobs conf # If not working on esarchive, you must create one from scratch check the how to.
platforms = path to any experiment platform conf # If not working on esarchive, you must create one from scratch check the how to.

[mail]
smtp_server = mail.bsc.es
mail_from = automail@bsc.es

[structures]
path = path to experiment folders

[globallogs]
path = path to global logs (for expid,delete and migrate commands)

[historicdb]
path = <experiment_folder>/historic

[autosubmitapi]
url = url of Autosubmit API (The API is provided inside the BSC network)
Autosubmit API provides extra information for some Autosubmit functions. It is not mandatory to have access to it to use Autosubmit.

[hosts]
authorized = [run bscearth000,bscesautosubmit01,bscesautosubmit02] [stats,clean,describe,check,report,dbfix,pklfix,updatedescript,updateversion all]
forbidden = [expìd,create,recovery,delete,inspect,monitor,recovery,migrate,configure,setstatus,testcase,test,refresh,archive,unarchive bscearth000,bscesautosubmit01,bscesautosubmit02]

Hosts:
From 3.14+ onwards, autosubmit commands can be tailored to run on specific machines. Previously, only run was affected by the deprecated whitelist parameter.

	authorized: [<command1,commandN> <machine1,machineN>] list of machines that can run given autosubmit commands.

	forbidden: [<command1,commandN> <machine1,machineN>] list of machines that cannot run given autosubmit commands.

	If no commands are defined, all commands are authorized.

	If no machines are defined, all machines are authorized.

Now you are ready to use Autosubmit !

Examples

Sequence of instructions to install Autosubmit and its dependencies in Ubuntu.

Update repositories
apt update

Avoid interactive stuff
export DEBIAN_FRONTEND=noninteractive

Dependencies
apt install wget curl python2 python-tk python2-dev graphviz -y -q

Additional dependencies related with pycrypto
apt install build-essential libssl-dev libffi-dev -y -q

Download get pip script and launch it
wget https://bootstrap.pypa.io/pip/2.7/get-pip.py
python2 get-pip.py

Install autosubmit using pip
pip2 install autosubmit

Check that we can execute autosubmit commands
autosubmit -h

Configure
autosubmit configure

Install
autosubmit install

Get expid
autosubmit expid -H TEST -d "Test exp."

Create with -np
Since it was a new install the expid will be a000
autosubmit create a000 -np

Sequence of instructions to install Autosubmit and its dependencies with conda.

Download conda
wget https://repo.anaconda.com/miniconda/Miniconda3-py39_4.12.0-Linux-x86_64.sh
Launch it
chmod +x ./Miniconda3-py39_4.12.0-Linux-x86_64.sh ; ./Miniconda3-py39_4.12.0-Linux-x86_64.sh
Download git
apt install git -y -q
Download autosubmit
git clone https://earth.bsc.es/gitlab/es/autosubmit.git -b v3.14.0
cd autosubmit
Create conda environment
conda env update -f environment.yml -n autosubmit python=2
Activate env
source activate autosubmit
Test autosubmit
autosubmit -v
Configure autosubmitrc and install database as indicated in this doc

Usage

Command list

	-expid

	Create a new experiment

	-create

	Create specified experiment workflow

	-check

	Check configuration for specified experiment

	-describe

	Show details for specified experiment

	-run

	Run specified experiment

	-inspect

	Generate cmd files

	-test

	Test experiment

	-testcase

	Test case experiment

	-monitor

	Plot specified experiment

	-stats

	Plot statistics for specified experiment

	-setstatus

	Sets job status for an experiment

	-recovery

	Recover specified experiment

	-clean

	Clean specified experiment

	-refresh

	Refresh project directory for an experiment

	-delete

	Delete specified experiment

	-configure

	Configure database and path for autosubmit

	-install

	Install database for Autosubmit on the configured folder

	-archive

	Clean, compress and remove from the experiments’ folder a finalized experiment

	-unarchive

	Restores an archived experiment

	-migrate_exp

	Migrates an experiment from one user to another

	-report

	extract experiment parameters

	-updateversion

	Updates the Autosubmit version of your experiment with the current version of the module you are using

	-dbfix

	Fixes the database malformed error in the historical database of your experiment

	-pklfix

	Fixed the blank pkl error of your experiment

	-updatedescrip

	Updates the description of your experiment (See: How to update the description of your experiment)

Tutorials (How to)

	How to create your experiment

	How to configure your experiment

	How to run your experiment

	How to recover and restart your experiment workflow

	How to check your experiment workflow status

	How to get stats from your experiment

	How to archive and clean an experiment

	How to use advanced features

Defining the workflow

One of the most important step that you have to do when planning to use autosubmit for an experiment is the definition
of the workflow the experiment will use. In this section you will learn about the workflow definition syntax so you will
be able to exploit autosubmit’s full potential

Warning

This section is NOT intended to show how to define your jobs. Please go to Tutorial start guide section for a comprehensive
list of job options.

Simple workflow

The simplest workflow that can be defined it is a sequence of two jobs, with the second one triggering at the end of
the first. To define it, we define the two jobs and then add a DEPENDENCIES attribute on the second job referring to the
first one.

It is important to remember when defining workflows that DEPENDENCIES on autosubmit always refer to jobs that should
be finished before launching the job that has the DEPENDENCIES attribute.

JOBS:
 One:
 FILE: "one.sh"
 Two:
 FILE: "two.sh"
 DEPENDENCIES: "One"

The resulting workflow can be seen in Figure 5

[image: simple workflow plot]

5 Example showing a simple workflow with two sequential jobs

Running jobs once per startdate, member or chunk

Autosubmit is capable of running ensembles made of various startdates and members. It also has the capability to
divide member execution on different chunks.

To set at what level a job has to run you have to use the RUNNING attribute. It has four possible values: once, date,
member and chunk corresponding to running once, once per startdate, once per member or once per chunk respectively.

JOBS:
 once:
 FILE: "Once.sh"
 date:
 FILE: "date.sh"
 DEPENDENCIES: "once"
 RUNNING: "date"
 member:
 FILE: "Member.sh"
 DEPENDENCIES: "date"
 RUNNING: "member"
 chunk:
 FILE: "Chunk.sh"
 DEPENDENCIES: "member"
 RUNNING: "chunk"

The resulting workflow can be seen in Figure 6 for a experiment with 2 startdates, 2 members and 2 chunks.

[image: simple workflow plot]

6 Example showing how to run jobs once per startdate, member or chunk.

Dependencies

Dependencies on autosubmit were introduced on the first example, but in this section you will learn about some special
cases that will be very useful on your workflows.

Dependencies with previous jobs

Autosubmit can manage dependencies between jobs that are part of different chunks, members or startdates. The next
example will show how to make a simulation job wait for the previous chunk of the simulation. To do that, we add
sim-1 on the DEPENDENCIES attribute. As you can see, you can add as much dependencies as you like separated by spaces

JOBS:
 ini:
 FILE: "ini.sh"
 RUNNING: "member"
 sim:
 FILE: "sim.sh"
 DEPENDENCIES: "ini sim-1"
 RUNNING: "chunk"
 postprocess:
 FILE: "postprocess.sh"
 DEPENDENCIES: "sim"
 RUNNING: "chunk"

The resulting workflow can be seen in Figure 7

Warning

Autosubmit simplifies the dependencies, so the final graph usually does not show all the lines that you may expect to
see. In this example you can see that there are no lines between the ini and the sim jobs for chunks 2 to 5 because
that dependency is redundant with the one on the previous sim

[image: simple workflow plot]

7 Example showing dependencies between sim jobs on different chunks.

Dependencies between running levels

On the previous examples we have seen that when a job depends on a job on a higher level (a running chunk job depending
on a member running job) all jobs wait for the higher running level job to be finished. That is the case on the ini sim dependency
on the next example.

In the other case, a job depending on a lower running level job, the higher level job will wait for ALL the lower level
jobs to be finished. That is the case of the postprocess combine dependency on the next example.

JOBS:
 ini:
 FILE: "ini.sh"
 RUNNING: "member"
 sim:
 FILE: "sim.sh"
 DEPENDENCIES: "ini sim-1"
 RUNNING: "chunk"
 postprocess:
 FILE: "postprocess.sh"
 DEPENDENCIES: "sim"
 RUNNING: "chunk"
 combine:
 FILE: "combine.sh"
 DEPENDENCIES: "postprocess"
 RUNNING: "member"

The resulting workflow can be seen in Figure dependencies

[image: simple workflow plot]

8 Example showing dependencies between jobs running at different levels.

Job frequency

Some times you just don’t need a job to be run on every chunk or member. For example, you may want to launch the postprocessing
job after various chunks have completed. This behaviour can be achieved using the FREQUENCY attribute. You can specify
an integer I for this attribute and the job will run only once for each I iterations on the running level.

Hint

You don’t need to adjust the frequency to be a divisor of the total jobs. A job will always execute at the last
iteration of its running level

JOBS:
 ini:
 FILE: "ini.sh"
 RUNNING: "member"
 sim:
 FILE: "sim.sh"
 DEPENDENCIES: "ini sim-1"
 RUNNING: "chunk"
 postprocess:
 FILE: "postprocess.sh"
 DEPENDENCIES: "sim"
 RUNNING: "chunk"
 FREQUENCY: "3"
 combine:
 FILE: "combine.sh"
 DEPENDENCIES: "postprocess"
 RUNNING: "member"

The resulting workflow can be seen in Figure 9

[image: simple workflow plot]

9 Example showing dependencies between jobs running at different frequencies.

Job synchronize

For jobs running at chunk level, and this job has dependencies, you could want
not to run a job for each experiment chunk, but to run once for all member/date dependencies, maintaining
the chunk granularity. In this cases you can use the SYNCHRONIZE job parameter to determine which kind
of synchronization do you want. See the below examples with and without this parameter.

Hint

This job parameter works with jobs with RUNNING parameter equals to ‘chunk’.

JOBS:
 ini:
 FILE: "ini.sh"
 RUNNING: "member"
 sim:
 FILE: "sim.sh"
 DEPENDENCIES: "INI SIM-1"
 RUNNING: "chunk"
 ASIM:
 FILE: "asim.sh"
 DEPENDENCIES: "SIM"
 RUNNING: "chunk"

The resulting workflow can be seen in Figure 10

[image: simple workflow plot]

10 Example showing dependencies between chunk jobs running without synchronize.

JOBS:
 ASIM:
 SYNCHRONIZE: member

The resulting workflow of setting SYNCHRONIZE parameter to ‘member’ can be seen in Figure 11

[image: simple workflow plot]

11 Example showing dependencies between chunk jobs running with member synchronize.

JOBS:
 ASIM:
 SYNCHRONIZE: member

The resulting workflow of setting SYNCHRONIZE parameter to ‘date’ can be seen in Figure 12

[image: simple workflow plot]

12 Example showing dependencies between chunk jobs running with date synchronize.

Job split

For jobs running at chunk level, it may be useful to split each chunk into different parts.
This behaviour can be achieved using the SPLITS attribute to specify the number of parts.
It is possible to define dependencies to specific splits within [], as well as to a list/range of splits,
in the format [1:3,7,10] or [1,2,3]

Hint

This job parameter works with jobs with RUNNING parameter equals to ‘chunk’.

JOBS:
 ini:
 FILE: "ini.sh"
 RUNNING: "member"
 sim:
 FILE: "sim.sh"
 DEPENDENCIES: "ini sim-1"
 RUNNING: "chunk"
 asim:
 FILE: "asim.sh"
 DEPENDENCIES: "sim"
 RUNNING: "chunk"
 SPLITS: "3"
 post:
 FILE: "post.sh"
 RUNNING: "chunk"
 DEPENDENCIES: "asim[1] asim[1]+1"

The resulting workflow can be seen in Figure 13

[image: simple workflow plot]

13 Example showing the job ASIM divided into 3 parts for each chunk.

Job delay

Some times you need a job to be run after a certain number of chunks. For example, you may want to launch the asim
job after various chunks have completed. This behaviour can be achieved using the DELAY attribute. You can specify
an integer N for this attribute and the job will run only after N chunks.

Hint

This job parameter works with jobs with RUNNING parameter equals to ‘chunk’.

JOBS:
 ini:
 FILE: "ini.sh"
 RUNNING: "member"
 sim:
 FILE: "sim.sh"
 DEPENDENCIES: "ini sim-1"
 RUNNING: "chunk"
 asim:
 FILE: "asim.sh"
 DEPENDENCIES: "sim asim-1"
 RUNNING: "chunk"
 DELAY: "2"
 post:
 FILE: "post.sh"
 DEPENDENCIES: "sim asim"
 RUNNING: "chunk"

The resulting workflow can be seen in Figure 14

[image: simple workflow with delay option]

14 Example showing the asim job starting only from chunk 3.

Frequent Questions and Answers

The latest version of Autosubmit implements a code system that guides you through the process of fixing some of the common problems you might find. Consequently, the FAQ section has been replaced by Error codes and solutions, where you will find the list of error codes, their descriptions, and solutions.

Troubleshooting

How to change the job status stopping autosubmit

Review How to change the job status stopping autosubmit.

How to change the job status without stopping autosubmit

Review How to change the job status without stopping autosubmit.

My project parameters are not being substituted in the templates

Explanation: If there is a duplicated section or option in any other side of autosubmit, including proj files It won’t be able to recognize which option pertains to what section in which file.

Solution: Don’t repeat section names and parameters names until Autosubmit 4.0 release.

Unable to recover remote logs files.

Explanation: If there are limitations on the remote platform regarding multiple connections,
Solution: You can try DISABLE_RECOVERY_THREADS = TRUE under the [platform_name] section in the platform.conf.

Error on create caused by a configuration parsing error

When running create you can come across an error similar to:

[ERROR] Trace: '%' must be followed by '%' or '(', found: u'%HPCROOTDIR%/remoteconfig/%CURRENT_ARCH%_launcher.sh'

The important part of this error is the message '%' must be followed by '%'. It indicated that the source of the error is the configparser library.
This library is included in the python common libraries, so you shouldn’t have any other version of it installed in your environment. Execute pip list, if you see
configparser in the list, then run pip uninstall configparser. Then, try to create your experiment again.

Other possible errors

I see the `database malformed` error on my experiment log.

Explanation: The latest version of autosubmit uses a database to efficiently track changes in the jobs of your experiment. It might happen that this small database gets corrupted.

Solution: run autosubmit dbfix expid where expid is the identifier of your experiment. This function will rebuild the database saving as much information as possible (usually all of it).

The pkl file of my experiment is empty but there is a job_list_%expid%_backup.pkl file that seems to be the real one.

Solution: run autosubmit pklfix expid, it will restore the backup file if possible.

Error codes and solutions

Experiment Locked - Critical Error 7000

	Code | Details | Solution

	7000

	Experiment is locked due another instance of Autosubmit using it

	Halt other experiment instances //Delete <expid>/tmp/autosubmit.lock

Database Issues - Critical Error codes [7001-7005]

	Code | Details | Solution

	7001

	Connection to the db could not be established

	Check if database exist

	7002

	Wrong version

	Check system sqlite version

	7003

	DB doesn’t exist

	Check if database exist

	7004

	Can’t create a new database

	Check your user permissions

	7005

	AS database is corrupted or locked

	Please, open a new issue ASAP. (If you are on BSC environment)

Default Solution

These issues are usually from server side, please, ask first in Autosubmit git if you don’t have a custom installation.

Wrong User Input - Critical Error codes [7010-7030]

	Code

	Details

	Solution

	7010

	Experiment has been halted in a manual way

	7011

	Wrong arguments for an specific command

	Check the command section for more info

	7012

	Insufficient permissions for an specific experiment.

	Check if you have enough permissions, experiment exist or specified expid has a typo

	7013

	Pending commits

	You must commit/synchronize pending changes in the experiment proj folder.

	7014

	Wrong configuration

	Check your experiment/conf files, also take a look to the ASLOG/command.log detailed output

Default Solution

These issues are usually mistakes from the user input, check the available logs and git resolved issues. Alternative, you can ask for help to Autosubmit team.

Platform issues - Critical Error codes. Local [7040-7050] and remote [7050-7060]

	Code | Details | Solution

	7040

	Invalid experiment pkl/db likely due a local platform failure

	Should be recovered automatically, if not check if there is a backup file and do it manually

	7041

	Weird job status

	Weird Job status, try to recover experiment(check the recovery how-to for more info) if this issue persist please, report it to gitlab

	7050

	Connection can’t be established.

	Check your experiment platform configuration

	7050

	Failure after a restart, connection can’t be restored.

	Check or ask (manually) if the remote platforms have any known issues

	7051

	Invalid ssh configuration.

	Check .ssh/config file. Additionally, Check if you can perform a password less connection to that platform.

	7052

	Scheduler is not installed or correctly configured.

	Check if there is a scheduler installed in the remote machine.

Default Solution

Check autosubmit log for detailed information, there will be additional error codes.

Uncatalogued codes - Critical Error codes [7060+]

	Code | Details | Solution

	7060

	Display issues during monitoring

	Use a different output or txt.

	7061

	Stat command failed

	Check Aslogs command output, open a git issue.

	7062

	Svn issues

	Check, in expdef, if url exist.

	7063

	cp/rsync issues

	Check if destination path exist.

	7064

	Git issues

	Check that the proj folder is a well configured git folder. Also, check [GIT] expdef config.

	7065

	Wrong git configuration

	Invalid git url. Check [GIT] expdef config. If issue persists, check if proj folder is a well configured git folder.

	7066

	Pre-submission feature issues | New feature, this message shouldn’t be prompt. Please report it to Git.

	7067

	Historical Database not found

	Configure [historicdb] PATH = <file_path>.

	7068

	Monitor output can’t be loaded

	Try another output method// Check if the experiment is reachable.

	7069

	Monitor output format invalid

	Try another output method.

	7070

	Bug in code

	Contact us via git/e-mail output.

	7071

	AS can’t run in this host

	If you think that this is an error, check the .autosubmitrc and modify the allowed/forbidden directives.

Default Solution

Check autosubmit log for detailed information, there will be additional error codes.

Minor errors - Error codes [6000+]

	Code

	Details

	Solution

	6001

	Failed to retrieve log files

	Automatically, if there aren’t bigger issues

	6002

	Failed reconnection | Automatically, if there aren’t bigger issues

	6003

	Failed connection, wrong configuration

	Check your platform.conf file

	6004

	Input output issues

	Automatically, if there aren’t bigger issues

	6005

	Unable to execute the command

	Automatically, if there aren’t bigger issues

	6006

	Failed command

	Check err output for more info, command worked but some issue was detected

	6007

	Broken sFTP connection

	Automatically, if there aren’t bigger issues

	6008

	Inconsistent/unexpected ,job status

	Automatically, if there aren’t bigger issues

	6009

	Failed job checker

	Automatically, if there aren’t bigger issues

	6010

	Corrupted job_list using backup

	Automatically, if it fails, Perform mv <expid>/pkl/job_list_backup.pkl <expid>/pkl/job_list.pkl

	6011

	Incorrect mail notifier configuration

	Double check your mail configuration on job.conf (job status) and autosubmit.conf (email)

	6012

	Migrate , archive/unarchive I/O issues

	Check migrate how-to configuration

	6013

	Configuration issues

	Check log output for more info

	6014

	Git Can’t clone repository submodule | Check submodule url, perform a refresh

	6015

	Submission failed

	Automatically, if there aren’t bigger issues

Developing a project

Autosubmit is used at BSC to run EC-Earth. To do that, a git repository has been created that contains the model source
code and the scripts used to run the tasks.

[image: EC-Earth experiment]

15 Example of monitoring plot for EC-Earth run with Autosubmit for 1 start date, 1 member and 3 chunks.

The workflow is defined using seven job types, as shown in the figure above. These job types are:

	Local_setup: prepares a patch for model changes and copies it to HPC.

	Remote_setup: creates a model copy and applies the patch to it.

	Ini: prepares model to start the simulation of one member.

	Sim: runs a simulation chunk (usually 1 to 3 months).

	Post: post-process outputs for one simulation chunk.

	Clean: removes unnecessary outputs from the simulated chunk.

	Transfer: transfers post-processed outputs to definitive storage.

Since Autosubmit 2.2 the user can select the desired source repository for the experiment project and using a given concrete branch is possible.
This introduce a better version control system for project and more options to create new experiments based on different developments by the user.
The different projects contain the shell script to run, for each job type (local setup, remote setup, ini, sim, post, clean and transfer) that are platform independent.
Additionally the user can modify the sources under proj folder.
The executable scripts are created at runtime so the modifications on the sources can be done on the fly.

Warning

Autosubmit automatically adds small shell script code blocks in the header and the tailer of your scripts, to control the workflow.
Please, remove any exit command in the end of your scripts, e.g. exit 0.

Important

For a complete reference on how to develop an EC-Earth project, please have a look in the following wiki page: https://earth.bsc.es/wiki/doku.php?id=models:models

Variables reference

Autosubmit uses a variable substitution system to facilitate the development of the templates. This variables can be
used on the template in the form %VARIABLE_NAME%.

Job variables

This variables are relatives to the current job.

	TASKTYPE: type of the job, as given on job configuration file.

	JOBNAME: current job full name.

	FAIL_COUNT: number of failed attempts to run this job.

	SDATE: current startdate.

	MEMBER: current member.

	CHUNK: current chunk.

	SPLIT: current split.

	DELAY: current delay.

	DAY_BEFORE: day before the startdate

	Chunk_End_IN_DAYS: chunk’s length in days

	Chunk_START_DATE: chunk’s start date

	Chunk_START_YEAR: chunk’s start year

	Chunk_START_MONTH: chunk’s start month

	Chunk_START_DAY: chunk’s start day

	Chunk_START_HOUR: chunk’s start hout

	Chunk_END_DATE: chunk’s end date

	Chunk_END_YEAR: chunk’s end year

	Chunk_END_MONTH: chunk’s end month

	Chunk_END_DAY: chunk’s end day

	Chunk_END_HOUR: chunk’s end hour

	PREV: days since startdate at the chunk’s start

	Chunk_FIRST: True if the current chunk is the first, false otherwise.

	Chunk_LAST: True if the current chunk is the last, false otherwise.

	NUMPROC: Number of processors that the job will use.

	NUMTHREADS: Number of threads that the job will use.

	NUMTASKS: Number of tasks that the job will use.

	HYPERTHREADING: Detects if hyperthreading is enabled or not.

	WALLCLOCK: Number of processors that the job will use.

	SCRATCH_FREE_SPACE: Percentage of free space required on the scratch.

	NOTIFY_ON: Determine the job statuses you want to be notified.

	WRAPPER: Wrapper type, None if wrapper is not being used

Platform variables

This variables are relative to the platforms defined on the jobs conf. A full set of the next variables are defined for
each platform defined on the platforms configuration file, substituting {PLATFORM_NAME} for each platform’s name. Also, a
suite of variables is defined for the current platform where {PLATFORM_NAME} is substituted by CURRENT.

	{PLATFORM_NAME}_ARCH: Platform name

	{PLATFORM_NAME}_HOST: Platform url

	{PLATFORM_NAME}_USER: Platform user

	{PLATFORM_NAME}_PROJ: Platform project

	{PLATFORM_NAME}_BUDG: Platform budget

	{PLATFORM_NAME}_RESERVATION: You can configure your reservation id for the given platform.

	{PLATFORM_NAME}_EXCLUSIVITY: True if you want to request exclusivity nodes.

	{PLATFORM_NAME}_TYPE: Platform scheduler type

	{PLATFORM_NAME}_VERSION: Platform scheduler version

	{PLATFORM_NAME}_SCRATCH_DIR: Platform’s scratch folder path

	{PLATFORM_NAME}_ROOTDIR: Platform’s experiment folder path

	{PLATFORM_NAME}_CUSTOM_DIRECTIVES: Platform’s custom directives for the resource manager.

Hint

The variables _USER, _PROJ and _BUDG has no value on the LOCAL platform.

Hint

Until now, the variables _RESERVATION and _EXCLUSIVITY are only available for MN.

It is also defined a suite of variables for the experiment’s default platform:

	HPCARCH: Default HPC platform name

	HPCHOST: Default HPC platform url

	HPCUSER: Default HPC platform user

	HPCPROJ: Default HPC platform project

	HPCBUDG: Default HPC platform budget

	HPCTYPE: Default HPC platform scheduler type

	HPCVERSION: Default HPC platform scheduler version

	SCRATCH_DIR: Default HPC platform scratch folder path

	HPCROOTDIR: Default HPC platform experiment’s folder path

Project variables

	NUMMEMBERS: number of members of the experiment

	NUMCHUNKS: number of chunks of the experiment

	CHUNKSIZE: size of each chunk

	CHUNKSIZEUNIT: unit of the chuk size. Can be hour, day, month or year.

	CALENDAR: calendar used for the experiment. Can be standard or noleap.

	ROOTDIR: local path to experiment’s folder

	PROJDIR: local path to experiment’s proj folder

Performance Metrics

Currently, these variables apply only to the report function of Autosubmit. See How to extract information about the experiment parameters.

	SYPD: Simulated years per day.

	ASYPD: Actual simulated years per day.

	RSYPD: Raw simulated years per day.

	CHSY: Core hours per simulated year.

	JPSY: Joules per simulated year.

	Parallelization: Number of cores requested for the simulation job.

For more information about these metrics please visit:

https://earth.bsc.es/gitlab/wuruchi/autosubmitreact/-/wikis/Performance-Metrics.

Module documentation

	autosubmit

	autosubmit.config

	autosubmit.database

	autosubmit.git

	autosubmit.job

	autosubmit.monitor

	autosubmit.platform

autosubmit

	
class autosubmit.autosubmit.Autosubmit

	Bases: object

Interface class for autosubmit.

	
static archive(expid, noclean=True, uncompress=True)

	Archives an experiment: call clean (if experiment is of version 3 or later), compress folder
to tar.gz and moves to year’s folder

	Parameters

	
	clean,compress –

	expid (str) – experiment identifier

	Returns

	

	
static change_status(final, final_status, job, save)

	Set job status to final

	Parameters

	
	final –

	final_status –

	job –

	
static check(experiment_id, notransitive=False)

	Checks experiment configuration and warns about any detected error or inconsistency.

	Parameters

	experiment_id (str) – experiment identifier:

	
static clean(expid, project, plot, stats)

	Clean experiment’s directory to save storage space.
It removes project directory and outdated plots or stats.

	Parameters

	
	expid (str) – identifier of experiment to clean

	project (bool) – set True to delete project directory

	plot (bool) – set True to delete outdated plots

	stats (bool) – set True to delete outdated stats

	
static configure(advanced, database_path, database_filename, local_root_path, platforms_conf_path, jobs_conf_path, smtp_hostname, mail_from, machine, local)

	Configure several paths for autosubmit: database, local root and others. Can be configured at system,
user or local levels. Local level configuration precedes user level and user level precedes system
configuration.

	Parameters

	
	database_path (str) – path to autosubmit database

	database_filename (str) – database filename

	local_root_path (str) – path to autosubmit’s experiments’ directory

	platforms_conf_path (str) – path to platforms conf file to be used as model for new experiments

	jobs_conf_path (str) – path to jobs conf file to be used as model for new experiments

	machine (bool) – True if this configuration has to be stored for all the machine users

	local (bool) – True if this configuration has to be stored in the local path

	mail_from (str) –

	smtp_hostname (str) –

	
static configure_dialog()

	Configure several paths for autosubmit interactively: database, local root and others.
Can be configured at system, user or local levels. Local level configuration precedes user level and user level
precedes system configuration.

	
static create(expid, noplot, hide, output='pdf', group_by=None, expand=[], expand_status=[], notransitive=False, check_wrappers=False, detail=False)

	Creates job list for given experiment. Configuration files must be valid before executing this process.

	Parameters

	
	expid (str) – experiment identifier

	noplot – if True, method omits final plotting of the jobs list. Only needed on large experiments when

plotting time can be much larger than creation time.
:type noplot: bool
:return: True if successful, False if not
:rtype: bool
:param hide: hides plot window
:type hide: bool
:param hide: hides plot window
:type hide: bool
:param output: plot’s file format. It can be pdf, png, ps or svg
:type output: str

	
static database_fix(expid)

	Database methods. Performs a sql dump of the database and restores it.

	Parameters

	expid (str) – experiment identifier

	Returns

	

	Return type

	

	
static delete(expid, force)

	Deletes and experiment from database and experiment’s folder

	Parameters

	
	expid (str) – identifier of the experiment to delete

	force (bool) – if True, does not ask for confirmation

	Returns

	True if succesful, False if not

	Return type

	bool

	
static describe(experiment_id)

	Show details for specified experiment

	Parameters

	experiment_id (str) – experiment identifier:

	
experiment_data

	Get the current voltage.

	
static expid(hpc, description, copy_id='', dummy=False, test=False, operational=False, root_folder='')

	Creates a new experiment for given HPC

	Parameters

	
	operational (bool) – if true, creates an operational experiment

	hpc (str) – name of the main HPC for the experiment

	description (str) – short experiment’s description.

	copy_id (str) – experiment identifier of experiment to copy

	dummy (bool) – if true, writes a default dummy configuration for testing

	test – if true, creates an experiment for testing

	Returns

	experiment identifier. If method fails, returns ‘’.

	Return type

	str

	
static generate_scripts_andor_wrappers(as_conf, job_list, jobs_filtered, packages_persistence, only_wrappers=False)

	
	Parameters

	
	as_conf (AutosubmitConfig() Object) – Class that handles basic configuration parameters of Autosubmit.

	job_list (JobList() Object) – Representation of the jobs of the experiment, keeps the list of jobs inside.

	jobs_filtered (List() of Job Objects) – list of jobs that are relevant to the process.

	packages_persistence (JobPackagePersistence() Object) – Object that handles local db persistence.

	only_wrappers (Boolean) – True when coming from Autosubmit.create(). False when coming from Autosubmit.inspect(),

	Returns

	Nothing

	Return type

	

	
static inspect(expid, lst, filter_chunks, filter_status, filter_section, notransitive=False, force=False, check_wrapper=False)

	Generates cmd files experiment.

	Parameters

	expid (str) – identifier of experiment to be run

	Returns

	True if run to the end, False otherwise

	Return type

	bool

	
static install()

	Creates a new database instance for autosubmit at the configured path

	
static migrate(experiment_id, offer, pickup, only_remote)

	Migrates experiment files from current to other user.
It takes mapping information for new user from config files.

	Parameters

	
	experiment_id – experiment identifier:

	pickup –

	offer –

	only_remote –

	
static monitor(expid, file_format, lst, filter_chunks, filter_status, filter_section, hide, txt_only=False, group_by=None, expand='', expand_status=[], hide_groups=False, notransitive=False, check_wrapper=False, txt_logfiles=False, detail=False)

	Plots workflow graph for a given experiment with status of each job coded by node color.
Plot is created in experiment’s plot folder with name <expid>_<date>_<time>.<file_format>

	Parameters

	
	expid (str) – identifier of the experiment to plot

	file_format (str) – plot’s file format. It can be pdf, png, ps or svg

	lst (str) – list of jobs to change status

	filter_chunks (str) – chunks to change status

	filter_status (str) – current status of the jobs to change status

	filter_section (str) – sections to change status

	hide (bool) – hides plot window

	txt_only (bool) – workflow will only be written as text

	group_by (bool) – workflow will only be written as text

	expand (str) – Filtering of jobs for it’s visualization

	expand_status (str) – Filtering of jobs for it’s visualization

	hide_groups (bool) – Simplified workflow illustration by encapsulating the jobs.

	notransitive (bool) – workflow will only be written as text

	check_wrapper (bool) – Shows a preview of how the wrappers will look

	notransitive – Some dependencies will be omitted

	detail (bool) – better text format representation but more expensive

	
static parse_args()

	Parse arguments given to an executable and start execution of command given

	
static pkl_fix(expid)

	Tries to find a backup of the pkl file and restores it. Verifies that autosubmit is not running on this experiment.

	Parameters

	expid (str) – experiment identifier

	Returns

	

	Return type

	

	
static recovery(expid, noplot, save, all_jobs, hide, group_by=None, expand=[], expand_status=[], notransitive=False, no_recover_logs=False, detail=False, force=False)

	Method to check all active jobs. If COMPLETED file is found, job status will be changed to COMPLETED,
otherwise it will be set to WAITING. It will also update the jobs list.

	Parameters

	
	expid (str) – identifier of the experiment to recover

	save (bool) – If true, recovery saves changes to the jobs list

	all_jobs (bool) – if True, it tries to get completed files for all jobs, not only active.

	hide (bool) – hides plot window

	force (bool) – Allows to restore the workflow even if there are running jobs

	
static refresh(expid, model_conf, jobs_conf)

	Refresh project folder for given experiment

	Parameters

	
	model_conf (bool) –

	jobs_conf (bool) –

	expid (str) – experiment identifier

	
static report(expid, template_file_path='', show_all_parameters=False, folder_path='', placeholders=False)

	Show report for specified experiment
:param expid: experiment identifier
:type expid: str
:param template_file_path: path to template file
:type template_file_path: str
:param show_all_parameters: show all parameters
:type show_all_parameters: bool
:param folder_path: path to folder
:type folder_path: str
:param placeholders: show placeholders
:type placeholders: bool

	
static rerun_recovery(expid, job_list, rerun_list, as_conf)

	Method to check all active jobs. If COMPLETED file is found, job status will be changed to COMPLETED,
otherwise it will be set to WAITING. It will also update the jobs list.

	Parameters

	
	expid (str) – identifier of the experiment to recover

	job_list (JobList) – job list to update

	rerun_list (list) – list of jobs to rerun

	as_conf (AutosubmitConfig) – AutosubmitConfig object

	Returns

	

	
static run_experiment(expid, notransitive=False, update_version=False, start_time=None, start_after=None, run_members=None)

	Runs and experiment (submitting all the jobs properly and repeating its execution in case of failure).

	Parameters

	expid (str) – identifier of experiment to be run

	Returns

	True if run to the end, False otherwise

	Return type

	bool

	
static set_status(expid, noplot, save, final, lst, filter_chunks, filter_status, filter_section, filter_type_chunk, hide, group_by=None, expand=[], expand_status=[], notransitive=False, check_wrapper=False, detail=False)

	Set status

	Parameters

	
	expid (str) – experiment identifier

	save (bool) – if true, saves the new jobs list

	final (str) – status to set on jobs

	lst (str) – list of jobs to change status

	filter_chunks (str) – chunks to change status

	filter_status (str) – current status of the jobs to change status

	filter_section (str) – sections to change status

	hide (bool) – hides plot window

	
static statistics(expid, filter_type, filter_period, file_format, hide, notransitive=False)

	Plots statistics graph for a given experiment.
Plot is created in experiment’s plot folder with name <expid>_<date>_<time>.<file_format>

	Parameters

	
	expid (str) – identifier of the experiment to plot

	filter_type – type of the jobs to plot

	filter_period – period to plot

	file_format (str) – plot’s file format. It can be pdf, png, ps or svg

	hide (bool) – hides plot window

	notransitive – Reduces workflow linkage complexity

	
static submit_ready_jobs(as_conf, job_list, platforms_to_test, packages_persistence, inspect=False, only_wrappers=False, hold=False)

	Gets READY jobs and send them to the platforms if there is available space on the queues

	Parameters

	
	as_conf (AutosubmitConfig object) – autosubmit config object

	job_list (JobList object) – job list to check

	platforms_to_test (set of Platform Objects, e.g. SgePlatform(), LsfPlatform()) – platforms used

	packages_persistence (JobPackagePersistence object) – Handles database per experiment.

	inspect (Boolean) – True if coming from generate_scripts_andor_wrappers().

	only_wrappers (Boolean) – True if it comes from create -cw, False if it comes from inspect -cw.

	Returns

	True if at least one job was submitted, False otherwise

	Return type

	Boolean

	
static test(expid, chunks, member=None, start_date=None, hpc=None, branch=None)

	Method to conduct a test for a given experiment. It creates a new experiment for a given experiment with a
given number of chunks with a random start date and a random member to be run on a random HPC.

	Parameters

	
	expid (str) – experiment identifier

	chunks (int) – number of chunks to be run by the experiment

	member (str) – member to be used by the test. If None, it uses a random one from which are defined on
the experiment.

	start_date (str) – start date to be used by the test. If None, it uses a random one from which are defined on
the experiment.

	hpc (str) – HPC to be used by the test. If None, it uses a random one from which are defined on
the experiment.

	branch (str) – branch or revision to be used by the test. If None, it uses configured branch.

	Returns

	True if test was succesful, False otherwise

	Return type

	bool

	
static testcase(copy_id, description, chunks=None, member=None, start_date=None, hpc=None, branch=None)

	Method to create a test case. It creates a new experiment whose id starts by ‘t’.

	Parameters

	
	copy_id (str) – experiment identifier

	description (str) – test case experiment description

	chunks (int) – number of chunks to be run by the experiment. If None, it uses configured chunk(s).

	member (str) – member to be used by the test. If None, it uses configured member(s).

	start_date (str) – start date to be used by the test. If None, it uses configured start date(s).

	hpc (str) – HPC to be used by the test. If None, it uses configured HPC.

	branch (str) – branch or revision to be used by the test. If None, it uses configured branch.

	Returns

	test case id

	Return type

	str

	
static unarchive(experiment_id, uncompressed=True)

	Unarchives an experiment: uncompress folder from tar.gz and moves to experiments root folder

	Parameters

	
	experiment_id (str) – experiment identifier

	uncompressed (bool) – if True, the tar file is uncompressed

	
static update_version(expid)

	Refresh experiment version with the current autosubmit version
:param expid: experiment identifier
:type expid: str

	
class autosubmit.autosubmit.MyParser(prog=None, usage=None, description=None, epilog=None, parents=[], formatter_class=<class 'argparse.HelpFormatter'>, prefix_chars='-', fromfile_prefix_chars=None, argument_default=None, conflict_handler='error', add_help=True, allow_abbrev=True)

	Bases: argparse.ArgumentParser

	
add_argument(dest, ..., name=value, ...)

	add_argument(option_string, option_string, …, name=value, …)

	
error(message: string)

	Prints a usage message incorporating the message to stderr and
exits.

If you override this in a subclass, it should not return – it
should either exit or raise an exception.

	
autosubmit.autosubmit.signal_handler(signal_received, frame)

	Used to handle interrupt signals, allowing autosubmit to clean before exit

	Parameters

	
	signal_received –

	frame –

	
autosubmit.autosubmit.signal_handler_create(signal_received, frame)

	Used to handle KeyboardInterrupt signals while the create method is being executed

	Parameters

	
	signal_received –

	frame –

autosubmit.config

autosubmit.config.basicConfig

	
class autosubmit.config.basicConfig.BasicConfig

	Bases: object

Class to manage configuration for Autosubmit path, database and default values for new experiments

	
static read()

	Reads configuration from .autosubmitrc files, first from /etc., then for user
directory and last for current path.

autosubmit.config.config_common

	
class autosubmit.config.config_common.AutosubmitConfig(expid, basic_config, parser_factory)

	Bases: object

Class to handle experiment configuration coming from file or database

	Parameters

	expid (str) – experiment identifier

	
check_autosubmit_conf()

	Checks experiment’s autosubmit configuration file.

	Returns

	True if everything is correct, False if it founds any error

	Return type

	bool

	
check_conf_files(running_time=False, first_load=True)

	Checks configuration files (autosubmit, experiment jobs and platforms), looking for invalid values, missing
required options. Print results in log

	Returns

	True if everything is correct, False if it finds any error

	Return type

	bool

	
check_expdef_conf()

	Checks experiment’s experiment configuration file.

	Returns

	True if everything is correct, False if it founds any error

	Return type

	bool

	
check_jobs_conf()

	Checks experiment’s jobs configuration file.

	Returns

	True if everything is correct, False if it founds any error

	Return type

	bool

	
check_platforms_conf()

	Checks experiment’s queues configuration file.

	
check_proj()

	Checks project config file

	Returns

	True if everything is correct, False if it founds any error

	Return type

	bool

	
check_proj_file()

	Add a section header to the project’s configuration file (if not exists)

	
deep_normalize(data)

	normalize a nested dictionary or similar mapping to uppercase.
Modify source in place.

	
deep_parameters_export(data)

	Export all variables of this experiment.
Resultant format will be Section.{subsections1…subsectionN} = Value.
In other words, it plain the dictionary into one level

	
deep_read_loops(data, for_keys=[], long_key='')

	Update a nested dictionary or similar mapping.
Modify source in place.

	
deep_update(unified_config, new_dict)

	Update a nested dictionary or similar mapping.
Modify source in place.

	
experiment_file

	Returns experiment’s config file name

	
file_modified(file, prev_mod_time)

	Function to check if a file has been modified.
:param file: path
:return: bool,new_time

	
get_chunk_ini(default=1)

	Returns the first chunk from where the experiment will start

	Parameters

	default –

	Returns

	initial chunk

	Return type

	int

	
get_chunk_size(default=1)

	Chunk Size as defined in the expdef file.

	Returns

	Chunksize, 1 as default.

	Return type

	int

	
get_chunk_size_unit()

	Unit for the chunk length

	Returns

	Unit for the chunk length Options: {hour, day, month, year}

	Return type

	str

	
get_communications_library()

	Returns the communications library from autosubmit’s config file. Paramiko by default.

	Returns

	communications library

	Return type

	str

	
get_copy_remote_logs()

	Returns if the user has enabled the logs local copy from autosubmit’s config file

	Returns

	if logs local copy

	Return type

	str

	
get_current_host(section)

	Returns the user to be changed from platform config file.

	Returns

	migrate user to

	Return type

	str

	
get_current_project(section)

	Returns the project to be changed from platform config file.

	Returns

	migrate user to

	Return type

	str

	
get_current_user(section)

	Returns the user to be changed from platform config file.

	Returns

	migrate user to

	Return type

	str

	
get_custom_directives(section)

	Gets custom directives needed for the given job type
:param section: job type
:type section: str
:return: custom directives needed
:rtype: str

	
get_date_list()

	Returns startdates list from experiment’s config file

	Returns

	experiment’s startdates

	Return type

	list

	
get_default_job_type()

	Returns the default job type from experiment’s config file

	Returns

	default type such as bash, python, r…

	Return type

	str

	
get_delay_retry_time()

	Returns delay time from autosubmit’s config file

	Returns

	safety sleep time

	Return type

	int

	
get_dependencies(section='None')

	Returns dependencies list from jobs config file

	Returns

	experiment’s members

	Return type

	list

	
get_disable_recovery_threads(section)

	Returns FALSE/TRUE
:return: recovery_threads_option
:rtype: str

	
get_export(section)

	Gets command line for being submitted with
:param section: job type
:type section: str
:return: wallclock time
:rtype: str

	
get_extensible_wallclock(wrapper={})

	Gets extend_wallclock for the given wrapper

	Parameters

	wrapper (dict) – wrapper

	Returns

	extend_wallclock

	Return type

	int

	
get_fetch_single_branch()

	Returns fetch single branch from experiment’s config file
Default is -single-branch
:return: fetch_single_branch(Y/N)
:rtype: str

	
get_file_jobs_conf()

	Returns path to project config file from experiment config file

	Returns

	path to project config file

	Return type

	str

	
get_file_project_conf()

	Returns path to project config file from experiment config file

	Returns

	path to project config file

	Return type

	str

	
get_full_config_as_json()

	Return config as json object

	
get_git_project_branch()

	Returns git branch from experiment’s config file

	Returns

	git branch

	Return type

	str

	
get_git_project_commit()

	Returns git commit from experiment’s config file

	Returns

	git commit

	Return type

	str

	
get_git_project_origin()

	Returns git origin from experiment config file

	Returns

	git origin

	Return type

	str

	
get_git_remote_project_root()

	Returns remote machine ROOT PATH

	Returns

	git commit

	Return type

	str

	
get_jobs_sections()

	Returns the list of sections defined in the job’s config file

	Returns

	sections

	Return type

	list

	
get_local_project_path()

	Gets path to origin for local project

	Returns

	path to local project

	Return type

	str

	
get_mails_to()

	Returns the address where notifications will be sent from autosubmit’s config file

	Returns

	mail address

	Return type

	[str]

	
get_max_processors()

	Returns max processors from autosubmit’s config file

	Return type

	str

	
get_max_waiting_jobs()

	Returns max number of waiting jobs from autosubmit’s config file

	Returns

	main platforms

	Return type

	int

	
get_max_wallclock()

	Returns max wallclock

	Return type

	str

	
get_max_wrapped_jobs(wrapper={})

	Returns the maximum number of jobs that can be wrapped together as configured in autosubmit’s config file

	Returns

	maximum number of jobs (or total jobs)

	Return type

	int

	
get_max_wrapped_jobs_horizontal(wrapper={})

	Returns the maximum number of jobs that can be wrapped together as configured in autosubmit’s config file

	Returns

	maximum number of jobs (or total jobs)

	Return type

	int

	
get_max_wrapped_jobs_vertical(wrapper={})

	Returns the maximum number of jobs that can be wrapped together as configured in autosubmit’s config file

	Returns

	maximum number of jobs (or total jobs)

	Return type

	int

	
get_member_list(run_only=False)

	Returns members list from experiment’s config file

	Returns

	experiment’s members

	Return type

	list

	
get_memory(section)

	Gets memory needed for the given job type
:param section: job type
:type section: str
:return: memory needed
:rtype: str

	
get_memory_per_task(section)

	Gets memory per task needed for the given job type
:param section: job type
:type section: str
:return: memory per task needed
:rtype: str

	
get_migrate_duplicate(section)

	Returns the user to change to from platform config file.

	Returns

	migrate user to

	Return type

	str

	
get_migrate_host_to(section)

	Returns the host to change to from platform config file.

	Returns

	host_to

	Return type

	str

	
get_migrate_project_to(section)

	Returns the project to change to from platform config file.

	Returns

	migrate project to

	Return type

	str

	
get_migrate_user_to(section)

	Returns the user to change to from platform config file.

	Returns

	migrate user to

	Return type

	str

	
get_min_wrapped_jobs(wrapper={})

	
Returns the minium number of jobs that can be wrapped together as configured in autosubmit’s config file

	Returns

	minim number of jobs (or total jobs)

	Return type

	int

	
get_min_wrapped_jobs_horizontal(wrapper={})

	Returns the maximum number of jobs that can be wrapped together as configured in autosubmit’s config file

	Returns

	maximum number of jobs (or total jobs)

	Return type

	int

	
get_min_wrapped_jobs_vertical(wrapper={})

	Returns the maximum number of jobs that can be wrapped together as configured in autosubmit’s config file

	Returns

	maximum number of jobs (or total jobs)

	Return type

	int

	
get_notifications()

	Returns if the user has enabled the notifications from autosubmit’s config file

	Returns

	if notifications

	Return type

	string

	
get_notifications_crash()

	Returns if the user has enabled the notifications from autosubmit’s config file

	Returns

	if notifications

	Return type

	string

	
get_num_chunks()

	Returns number of chunks to run for each member

	Returns

	number of chunks

	Return type

	int

	
get_output_type()

	Returns default output type, pdf if none

	Returns

	output type

	Return type

	string

	
get_parse_two_step_start()

	Returns two-step start jobs

	Returns

	jobs_list

	Return type

	str

	
static get_parser(parser_factory, file_path)

	Gets parser for given file

	Parameters

	
	parser_factory –

	file_path (Path) – path to file to be parsed

	Returns

	parser

	Return type

	YAMLParser

	
get_platform()

	Returns main platforms from experiment’s config file

	Returns

	main platforms

	Return type

	str

	
get_processors(section)

	Gets processors needed for the given job type
:param section: job type
:type section: str
:return: wallclock time
:rtype: str

	
get_project_destination()

	Returns git commit from experiment’s config file

	Returns

	git commit

	Return type

	str

	
get_project_dir()

	Returns experiment’s project directory

	Returns

	experiment’s project directory

	Return type

	str

	
get_project_type()

	Returns project type from experiment config file

	Returns

	project type

	Return type

	str

	
get_remote_dependencies()

	Returns if the user has enabled the PRESUBMISSION configuration parameter from autosubmit’s config file

	Returns

	if remote dependencies

	Return type

	string

	
get_rerun()

	Returns startdates list from experiment’s config file

	Returns

	rerurn value

	Return type

	bool

	
get_rerun_jobs()

	Returns rerun jobs

	Returns

	jobs_list

	Return type

	str

	
get_retrials()

	Returns max number of retrials for job from autosubmit’s config file

	Returns

	safety sleep time

	Return type

	int

	
get_safetysleeptime()

	Returns safety sleep time from autosubmit’s config file

	Returns

	safety sleep time

	Return type

	int

	
get_scratch_free_space(section)

	Gets scratch free space needed for the given job type
:param section: job type
:type section: str
:return: percentage of scratch free space needed
:rtype: int

	
get_section(section, d_value='', must_exists=False)

	Gets any section if it exists within the dictionary, else returns None or error if must exist.
:param section: section to get
:type section: list
:param d_value: default value to return if section does not exist
:type d_value: str
:param must_exists: if true, error is raised if section does not exist
:type must_exists: bool
:return: section value
:rtype: str

	
get_storage_type()

	Returns the storage system from autosubmit’s config file. Pkl by default.

	Returns

	communications library

	Return type

	str

	
get_submodules_list()

	Returns submodules list from experiment’s config file
Default is –recursive
:return: submodules to load
:rtype: list

	
get_svn_project_revision()

	Get revision for subversion project

	Returns

	revision for subversion project

	Return type

	str

	
get_svn_project_url()

	Gets subversion project url

	Returns

	subversion project url

	Return type

	str

	
get_synchronize(section)

	Gets wallclock for the given job type
:param section: job type
:type section: str
:return: wallclock time
:rtype: str

	
get_tasks(section)

	Gets tasks needed for the given job type
:param section: job type
:type section: str
:return: tasks (processes) per host
:rtype: str

	
get_threads(section)

	Gets threads needed for the given job type
:param section: job type
:type section: str
:return: threads needed
:rtype: str

	
get_total_jobs()

	Returns max number of running jobs from autosubmit’s config file

	Returns

	max number of running jobs

	Return type

	int

	
get_version()

	Returns version number of the current experiment from autosubmit’s config file

	Returns

	version

	Return type

	str

	
get_wallclock(section)

	Gets wallclock for the given job type
:param section: job type
:type section: str
:return: wallclock time
:rtype: str

	
get_wchunkinc(section)

	Gets the chunk increase to wallclock
:param section: job type
:type section: str
:return: wallclock increase per chunk
:rtype: str

	
get_wrapper_check_time(wrapper=None)

	Returns time to check the status of jobs in the wrapper

	Returns

	wrapper check time

	Return type

	int

	
get_wrapper_export(wrapper={})

	Returns modules variable from wrapper

	Returns

	string

	Return type

	string

	
get_wrapper_jobs(wrapper=None)

	Returns the jobs that should be wrapped, configured in the autosubmit’s config

	Returns

	expression (or none)

	Return type

	string

	
get_wrapper_machinefiles(wrapper={})

	Returns the strategy for creating the machinefiles in wrapper jobs

	Returns

	machinefiles function to use

	Return type

	string

	
get_wrapper_method(wrapper={})

	Returns the method of make the wrapper

	Returns

	method

	Return type

	string

	
get_wrapper_policy(wrapper={})

	Returns what kind of policy (flexible, strict, mixed) the user has configured in the autosubmit’s config

	Returns

	wrapper type (or none)

	Return type

	string

	
get_wrapper_queue(wrapper={})

	Returns the wrapper queue if not defined, will be the one of the first job wrapped

	Returns

	expression (or none)

	Return type

	string

	
get_wrapper_retrials(wrapper={})

	Returns max number of retrials for job from autosubmit’s config file

	Returns

	safety sleep time

	Return type

	int

	
get_wrapper_type(wrapper={})

	Returns what kind of wrapper (VERTICAL, MIXED-VERTICAL, HORIZONTAL, HYBRID, MULTI NONE) the user has configured in the autosubmit’s config

	Returns

	wrapper type (or none)

	Return type

	string

	
get_wrappers()

	Returns the jobs that should be wrapped, configured in the autosubmit’s config

	Returns

	expression

	Return type

	dict

	
get_x11(section)

	Active X11 for this section
:param section: job type
:type section: str
:return: false/true
:rtype: str

	
get_x11_jobs()

	Returns the jobs that should support x11, configured in the autosubmit’s config

	Returns

	expression (or none)

	Return type

	string

	
jobs_file

	Returns project’s jobs file name

	
load_parameters()

	Load all experiment data
:return: a dictionary containing tuples [parameter_name, parameter_value]
:rtype: dict

	
load_platform_parameters()

	Load parameters from platform config files.

	Returns

	a dictionary containing tuples [parameter_name, parameter_value]

	Return type

	dict

	
load_section_parameters(job_list, as_conf, submitter)

	Load parameters from job config files.

	Returns

	a dictionary containing tuples [parameter_name, parameter_value]

	Return type

	dict

	
normalize_variables(data)

	Apply some memory internal variables to normalize it format. (right now only dependencies)

	
platforms_file

	Returns experiment’s platforms config file name

	Returns

	platforms config file’s name

	Return type

	str

	
platforms_parser

	Returns experiment’s platforms parser object

	Returns

	platforms config parser object

	Return type

	SafeConfigParser

	
project_file

	Returns project’s config file name

	
reload(first_load=False)

	Creates parser objects for configuration files

	
set_expid(exp_id)

	Set experiment identifier in autosubmit and experiment config files

	Parameters

	exp_id (str) – experiment identifier to store

	
set_git_project_commit(as_conf)

	Function to register in the configuration the commit SHA of the git project version.
:param as_conf: Configuration class for exteriment
:type as_conf: AutosubmitConfig

	
set_new_host(section, new_host)

	Sets new host for given platform
:param new_host:
:param section: platform name
:type: str

	
set_new_project(section, new_project)

	Sets new project for given platform
:param new_project:
:param section: platform name
:type: str

	
set_new_user(section, new_user)

	Sets new user for given platform
:param new_user:
:param section: platform name
:type: str

	
set_platform(hpc)

	Sets main platforms in experiment’s config file

	Parameters

	hpc – main platforms

	Type

	str

	
set_safetysleeptime(sleep_time)

	Sets autosubmit’s version in autosubmit’s config file

	Parameters

	sleep_time (int) – value to set

	
set_version(autosubmit_version)

	Sets autosubmit’s version in autosubmit’s config file

	Parameters

	autosubmit_version (str) – autosubmit’s version

	
unify_conf()

	Unifies all configuration files into a single dictionary. Custom files will be able to override the default configuration.

autosubmit.database

Module containing functions to manage autosubmit’s database.

	
exception autosubmit.database.db_common.DbException(message)

	Exception class for database errors

	
autosubmit.database.db_common.check_db()

	Checks if database file exist

	Returns

	None if exists, terminates program if not

	
autosubmit.database.db_common.check_experiment_exists(name, error_on_inexistence=True)

	Checks if exist an experiment with the given name. Anti-lock version.

	Parameters

	
	error_on_inexistence (bool) – if True, adds an error log if experiment does not exist

	name (str) – Experiment name

	Returns

	If experiment exists returns true, if not returns false

	Return type

	bool

	
autosubmit.database.db_common.close_conn(conn, cursor)

	Commits changes and close connection to database

	Parameters

	
	conn (sqlite3.Connection) – connection to close

	cursor (sqlite3.Cursor) – cursor to close

	
autosubmit.database.db_common.create_db(qry)

	Creates a new database for autosubmit

	Parameters

	qry (str) – query to create the new database

	
autosubmit.database.db_common.delete_experiment(experiment_id)

	Removes experiment from database. Anti-lock version.

	Parameters

	experiment_id (str) – experiment identifier

	Returns

	True if delete is succesful

	Return type

	bool

	
autosubmit.database.db_common.get_autosubmit_version(expid)

	Get the minimun autosubmit version needed for the experiment. Anti-lock version.

	Parameters

	expid (str) – Experiment name

	Returns

	If experiment exists returns the autosubmit version for it, if not returns None

	Return type

	str

	
autosubmit.database.db_common.last_name_used(test=False, operational=False)

	Gets last experiment identifier used. Anti-lock version.

	Parameters

	
	test (bool) – flag for test experiments

	operational – flag for operational experiments

	Returns

	last experiment identifier used, ‘empty’ if there is none

	Return type

	str

	
autosubmit.database.db_common.open_conn(check_version=True)

	Opens a connection to database

	Parameters

	check_version (bool) – If true, check if the database is compatible with this autosubmit version

	Returns

	connection object, cursor object

	Return type

	sqlite3.Connection, sqlite3.Cursor

	
autosubmit.database.db_common.save_experiment(name, description, version)

	Stores experiment in database. Anti-lock version.

	Parameters

	
	version (str) –

	name (str) – experiment’s name

	description (str) – experiment’s description

	
autosubmit.database.db_common.update_experiment_descrip_version(name, description=None, version=None)

	Updates the experiment’s description and/or version. Anti-lock version.

	Parameters

	
	name – experiment name (expid)

	description – experiment new description

	version – experiment autosubmit version

	Rtype name

	str

	Rtype description

	str

	Rtype version

	str

	Returns

	If description has been update, True; otherwise, False.

	Return type

	bool

autosubmit.git

	
class autosubmit.git.autosubmit_git.AutosubmitGit(expid)

	Class to handle experiment git repository

	Parameters

	expid (str) – experiment identifier

	
static check_commit(as_conf)

	Function to check uncommited changes

	Parameters

	as_conf (autosubmit.config.AutosubmitConfig) – experiment configuration

	
static clean_git(as_conf)

	Function to clean space on BasicConfig.LOCAL_ROOT_DIR/git directory.

	Parameters

	as_conf (autosubmit.config.AutosubmitConfig) – experiment configuration

	
static clone_repository(as_conf, force, hpcarch)

	Clones a specified git repository on the project folder

	Parameters

	
	as_conf (autosubmit.config.AutosubmitConfig) – experiment configuration

	force (bool) – if True, it will overwrite any existing clone

	hpcarch – current main platform

	Returns

	True if clone was successful, False otherwise

autosubmit.job

Main module for Autosubmit. Only contains an interface class to all functionality implemented on Autosubmit

	
class autosubmit.job.job.Job(name, job_id, status, priority)

	Class to handle all the tasks with Jobs at HPC.
A job is created by default with a name, a jobid, a status and a type.
It can have children and parents. The inheritance reflects the dependency between jobs.
If Job2 must wait until Job1 is completed then Job2 is a child of Job1. Inversely Job1 is a parent of Job2

	Parameters

	
	name (str) – job’s name

	job_id (int) – job’s id

	status (Status) – job initial status

	priority (int) – job’s priority

	
add_edge_info(parent_name, special_variables)

	Adds edge information to the job

	Parameters

	
	parent_name (str) – parent name

	special_variables (dict) – special variables

	
add_parent(*parents)

	Add parents for the job. It also adds current job as a child for all the new parents

	Parameters

	parents (*Job) – job’s parents to add

	
check_completion(default_status=-1, over_wallclock=False)

	Check the presence of COMPLETED file.
Change status to COMPLETED if COMPLETED file exists and to FAILED otherwise.
:param default_status: status to set if job is not completed. By default, is FAILED
:type default_status: Status

	
check_end_time()

	Returns end time from stat file

	Returns

	date and time

	Return type

	str

	
check_retrials_end_time()

	Returns list of end datetime for retrials from total stats file

	Returns

	date and time

	Return type

	list[int]

	
check_retrials_start_time()

	Returns list of start datetime for retrials from total stats file

	Returns

	date and time

	Return type

	list[int]

	
check_retrials_submit_time()

	Returns list of submit datetime for retrials from total stats file

	Returns

	date and time

	Return type

	list[int]

	
check_running_after(date_limit)

	Checks if the job was running after the given date
:param date_limit: reference date
:type date_limit: datetime.datetime
:return: True if job was running after the given date, false otherwise
:rtype: bool

	
check_script(as_conf, parameters, show_logs=False)

	Checks if script is well-formed

	Parameters

	
	parameters (dict) – script parameters

	as_conf (AutosubmitConfig) – configuration file

	show_logs (Bool) – Display output

	Returns

	true if not problem has been detected, false otherwise

	Return type

	bool

	
check_start_time()

	Returns job’s start time

	Returns

	start time

	Return type

	str

	
check_started_after(date_limit)

	Checks if the job started after the given date
:param date_limit: reference date
:type date_limit: datetime.datetime
:return: True if job started after the given date, false otherwise
:rtype: bool

	
children

	Returns a list containing all children of the job

	Returns

	child jobs

	Return type

	set

	
children_names_str

	Comma separated list of children’s names

	
compare_by_id(other)

	Compare jobs by ID

	Parameters

	other (Job) – job to compare

	Returns

	comparison result

	Return type

	bool

	
compare_by_name(other)

	Compare jobs by name

	Parameters

	other (Job) – job to compare

	Returns

	comparison result

	Return type

	bool

	
compare_by_status(other)

	Compare jobs by status value

	Parameters

	other (Job) – job to compare

	Returns

	comparison result

	Return type

	bool

	
create_script(as_conf)

	Creates script file to be run for the job

	Parameters

	as_conf (AutosubmitConfig) – configuration object

	Returns

	script’s filename

	Return type

	str

	
delete_child(child)

	Removes a child from the job

	Parameters

	child (Job) – child to remove

	
delete_parent(parent)

	Remove a parent from the job

	Parameters

	parent (Job) – parent to remove

	
get_last_retrials()

	Returns the retrials of a job, including the last COMPLETED run. The selection stops, and does not include, when the previous COMPLETED job is located or the list of registers is exhausted.

	Returns

	list of dates of retrial [submit, start, finish] in datetime format

	Return type

	list of list

	
has_children()

	Returns true if job has any children, else return false

	Returns

	true if job has any children, otherwise return false

	Return type

	bool

	
has_parents()

	Returns true if job has any parents, else return false

	Returns

	true if job has any parent, otherwise return false

	Return type

	bool

	
inc_fail_count()

	Increments fail count

	
static is_a_completed_retrial(fields)

	Returns true only if there are 4 fields: submit start finish status, and status equals COMPLETED.

	
is_ancestor(job)

	Check if the given job is an ancestor
:param job: job to be checked if is an ancestor
:return: True if job is an ancestor, false otherwise
:rtype bool

	
is_over_wallclock(start_time, wallclock)

	Check if the job is over the wallclock time, it is an alternative method to avoid platform issues
:param start_time:
:param wallclock:
:return:

	
is_parent(job)

	Check if the given job is a parent
:param job: job to be checked if is a parent
:return: True if job is a parent, false otherwise
:rtype bool

	
log_job()

	Prints job information in log

	
long_name

	Job’s long name. If not setted, returns name

	Returns

	long name

	Return type

	str

	
parents

	Returns parent jobs list

	Returns

	parent jobs

	Return type

	set

	
platform

	Returns the platform to be used by the job. Chooses between serial and parallel platforms

:return HPCPlatform object for the job to use
:rtype: HPCPlatform

	
print_job()

	Prints debug information about the job

	
print_parameters()

	Print sjob parameters in log

	
queue

	Returns the queue to be used by the job. Chooses between serial and parallel platforms

:return HPCPlatform object for the job to use
:rtype: HPCPlatform

	
remove_redundant_parents()

	Checks if a parent is also an ancestor, if true, removes the link in both directions.
Useful to remove redundant dependencies.

	
status_str

	String representation of the current status

	
total_processors

	Number of processors requested by job.
Reduces ‘:’ separated format if necessary.

	
update_content(as_conf)

	Create the script content to be run for the job

	Parameters

	as_conf (config) – config

	Returns

	script code

	Return type

	str

	
update_parameters(as_conf, parameters, default_parameters={'M': '%M%', 'M_': '%M_%', 'Y': '%Y%', 'Y_': '%Y_%', 'd': '%d%', 'd_': '%d_%', 'm': '%m%', 'm_': '%m_%'})

	Refresh parameters value

	Parameters

	
	default_parameters (dict) –

	as_conf (AutosubmitConfig) –

	parameters (dict) –

	
update_status(as_conf, failed_file=False)

	Updates job status, checking COMPLETED file if needed

	Parameters

	
	copy_remote_logs – boolean, if True, copies remote logs to local

	failed_file – boolean, if True, checks if the job failed

	Returns

	

	
write_end_time(completed, enabled=False)

	Writes ends date and time to TOTAL_STATS file
:param completed: True if job was completed successfully, False otherwise
:type completed: bool

	
write_start_time(enabled=False)

	Writes start date and time to TOTAL_STATS file
:return: True if succesful, False otherwise
:rtype: bool

	
write_submit_time(enabled=False, hold=False)

	Writes submit date and time to TOTAL_STATS file. It doesn’t write if hold == True.

	
write_total_stat_by_retries(total_stats, first_retrial=False)

	Writes all data to TOTAL_STATS file
:param total_stats: data gathered by the wrapper
:type total_stats: dict
:param first_retrial: True if this is the first retry, False otherwise
:type first_retrial: bool

	
class autosubmit.job.job.WrapperJob(name, job_id, status, priority, job_list, total_wallclock, num_processors, platform, as_config, hold)

	Defines a wrapper from a package.

Calls Job constructor.

	Parameters

	
	name (String) – Name of the Package

	job_id (Integer) – ID of the first Job of the package

	status (String) – ‘READY’ when coming from submit_ready_jobs()

	priority (Integer) – 0 when coming from submit_ready_jobs()

	job_list (List() of Job() objects) – List of jobs in the package

	total_wallclock (String Formatted) – Wallclock of the package

	num_processors (Integer) – Number of processors for the package

	platform (Platform Object. e.g. EcPlatform()) – Platform object defined for the package

	as_config (AutosubmitConfig object) – Autosubmit basic configuration object

	
class autosubmit.job.job_common.StatisticsSnippetBash

	Class to handle the statistics snippet of a job. It contains header and tailer for
local and remote jobs

	
class autosubmit.job.job_common.StatisticsSnippetEmpty

	Class to handle the statistics snippet of a job. It contains header and footer for
local and remote jobs

	
class autosubmit.job.job_common.StatisticsSnippetPython(version='3')

	Class to handle the statistics snippet of a job. It contains header and tailer for
local and remote jobs

	
class autosubmit.job.job_common.StatisticsSnippetR

	Class to handle the statistics snippet of a job. It contains header and tailer for
local and remote jobs

	
class autosubmit.job.job_common.Status

	Class to handle the status of a job

	
class autosubmit.job.job_common.Type

	Class to handle the status of a job

	
autosubmit.job.job_common.increase_wallclock_by_chunk(current, increase, chunk)

	Receives the wallclock times an increases it according to a quantity times the number of the current chunk.
The result cannot be larger than 48:00.
If Chunk = 0 then no increment.

	Parameters

	
	current (str) – WALLCLOCK HH:MM

	increase (str) – WCHUNKINC HH:MM

	chunk (int) – chunk number

	Returns

	HH:MM wallclock

	Return type

	str

	
autosubmit.job.job_common.parse_output_number(string_number)

	Parses number in format 1.0K 1.0M 1.0G

	Parameters

	string_number (str) – String representation of number

	Returns

	number in float format

	Return type

	float

	
class autosubmit.job.job_list.JobList(expid, config, parser_factory, job_list_persistence, as_conf)

	Class to manage the list of jobs to be run by autosubmit

	
add_logs(logs)

	add logs to the current job_list
:return: logs
:rtype: dict(tuple)

	
backup_load()

	Recreates a stored job list from the persistence

	Returns

	loaded job list object

	Return type

	JobList

	
backup_save()

	Persists the job list

	
check_scripts(as_conf)

	When we have created the scripts, all parameters should have been substituted.
%PARAMETER% handlers not allowed

	Parameters

	as_conf (AutosubmitConfig) – experiment configuration

	
expid

	Returns the experiment identifier

	Returns

	experiment’s identifier

	Return type

	str

	
generate(date_list, member_list, num_chunks, chunk_ini, parameters, date_format, default_retrials, default_job_type, wrapper_type=None, wrapper_jobs={}, new=True, notransitive=False, update_structure=False, run_only_members=[], show_log=True, jobs_data={}, as_conf='')

	Creates all jobs needed for the current workflow

	Parameters

	
	default_job_type (str) – default type for jobs

	date_list (list) – start dates

	member_list (list) – members

	num_chunks (int) – number of chunks to run

	chunk_ini (int) – the experiment will start by the given chunk

	parameters (dict) – experiment parameters

	date_format (str) – option to format dates

	default_retrials (int) – default retrials for ech job

	new (bool) – is it a new generation?

	wrapper_type – Type of wrapper defined by the user in autosubmit_.yml [wrapper] section.

	wrapper_jobs (String) – Job types defined in autosubmit_.yml [wrapper sections] to be wrapped.

	
get_active(platform=None, wrapper=False)

	Returns a list of active jobs (In platforms queue + Ready)

	Parameters

	platform (HPCPlatform) – job platform

	Returns

	active jobs

	Return type

	list

	
get_all(platform=None, wrapper=False)

	Returns a list of all jobs

	Parameters

	platform (HPCPlatform) – job platform

	Returns

	all jobs

	Return type

	list

	
get_chunk_list()

	Get inner chunk list

	Returns

	chunk list

	Return type

	list

	
get_completed(platform=None, wrapper=False)

	Returns a list of completed jobs

	Parameters

	platform (HPCPlatform) – job platform

	Returns

	completed jobs

	Return type

	list

	
get_date_list()

	Get inner date list

	Returns

	date list

	Return type

	list

	
get_delayed(platform=None)

	Returns a list of delayed jobs

	Parameters

	platform (HPCPlatform) – job platform

	Returns

	delayed jobs

	Return type

	list

	
get_failed(platform=None, wrapper=False)

	Returns a list of failed jobs

	Parameters

	platform (HPCPlatform) – job platform

	Returns

	failed jobs

	Return type

	list

	
get_finished(platform=None, wrapper=False)

	Returns a list of jobs finished (Completed, Failed)

	Parameters

	platform (HPCPlatform) – job platform

	Returns

	finished jobs

	Return type

	list

	
get_held_jobs(platform=None)

	Returns a list of jobs in the platforms (Held)

	Parameters

	platform (HPCPlatform) – job platform

	Returns

	jobs in platforms

	Return type

	list

	
get_in_queue(platform=None, wrapper=False)

	Returns a list of jobs in the platforms (Submitted, Running, Queuing, Unknown,Held)

	Parameters

	platform (HPCPlatform) – job platform

	Returns

	jobs in platforms

	Return type

	list

	
get_job_by_name(name)

	Returns the job that its name matches parameter name

	Parameters

	name (str) – name to look for

	Returns

	found job

	Return type

	job

	
get_job_list()

	Get inner job list

	Returns

	job list

	Return type

	list

	
get_job_names(lower_case=False)

	Returns a list of all job names
:param: lower_case: if true, returns lower case job names
:type: lower_case: bool

	Returns

	all job names

	Return type

	list

	
get_job_related(select_jobs_by_name='', select_all_jobs_by_section='', filter_jobs_by_section='', two_step_start=True)

	
	Parameters

	
	select_jobs_by_name – job name

	select_all_jobs_by_section – section name

	filter_jobs_by_section – section, date , member? , chunk?

	Returns

	jobs_list names

	Return type

	list

	
get_jobs_by_section(section_list)

	Returns the job that its name matches parameter section
:parameter section_list: list of sections to look for
:type section_list: list
:return: found job
:rtype: job

	
get_logs()

	Returns a dict of logs by jobs_name jobs

	Returns

	logs

	Return type

	dict(tuple)

	
get_member_list()

	Get inner member list

	Returns

	member list

	Return type

	list

	
get_not_in_queue(platform=None, wrapper=False)

	Returns a list of jobs NOT in the platforms (Ready, Waiting)

	Parameters

	platform (HPCPlatform) – job platform

	Returns

	jobs not in platforms

	Return type

	list

	
get_ordered_jobs_by_date_member(section)

	Get the dictionary of jobs ordered according to wrapper’s expression divided by date and member

	Returns

	jobs ordered divided by date and member

	Return type

	dict

	
get_prepared(platform=None)

	Returns a list of prepared jobs

	Parameters

	platform (HPCPlatform) – job platform

	Returns

	prepared jobs

	Return type

	list

	
get_queuing(platform=None, wrapper=False)

	Returns a list of jobs queuing

	Parameters

	platform (HPCPlatform) – job platform

	Returns

	queuedjobs

	Return type

	list

	
get_ready(platform=None, hold=False, wrapper=False)

	Returns a list of ready jobs

	Parameters

	platform (HPCPlatform) – job platform

	Returns

	ready jobs

	Return type

	list

	
get_running(platform=None, wrapper=False)

	Returns a list of jobs running

	Parameters

	platform (HPCPlatform) – job platform

	Returns

	running jobs

	Return type

	list

	
get_skipped(platform=None)

	Returns a list of skipped jobs

	Parameters

	platform (HPCPlatform) – job platform

	Returns

	skipped jobs

	Return type

	list

	
get_submitted(platform=None, hold=False, wrapper=False)

	Returns a list of submitted jobs

	Parameters

	platform (HPCPlatform) – job platform

	Returns

	submitted jobs

	Return type

	list

	
get_suspended(platform=None, wrapper=False)

	Returns a list of jobs on unknown state

	Parameters

	platform (HPCPlatform) – job platform

	Returns

	unknown state jobs

	Return type

	list

	
get_uncompleted(platform=None, wrapper=False)

	Returns a list of completed jobs

	Parameters

	platform (HPCPlatform) – job platform

	Returns

	completed jobs

	Return type

	list

	
get_uncompleted_and_not_waiting(platform=None, wrapper=False)

	Returns a list of completed jobs and waiting

	Parameters

	platform (HPCPlatform) – job platform

	Returns

	completed jobs

	Return type

	list

	
get_unknown(platform=None, wrapper=False)

	Returns a list of jobs on unknown state

	Parameters

	platform (HPCPlatform) – job platform

	Returns

	unknown state jobs

	Return type

	list

	
get_unsubmitted(platform=None, wrapper=False)

	Returns a list of unsummited jobs

	Parameters

	platform (HPCPlatform) – job platform

	Returns

	all jobs

	Return type

	list

	
get_waiting(platform=None, wrapper=False)

	Returns a list of jobs waiting

	Parameters

	platform (HPCPlatform) – job platform

	Returns

	waiting jobs

	Return type

	list

	
get_waiting_remote_dependencies(platform_type='slurm')

	Returns a list of jobs waiting on slurm scheduler
:param platform_type: platform type
:type platform_type: str
:return: waiting jobs
:rtype: list

	
graph

	Returns the graph

	Returns

	graph

	Return type

	networkx graph

	
load()

	Recreates a stored job list from the persistence

	Returns

	loaded job list object

	Return type

	JobList

	
static load_file(filename)

	Recreates a stored joblist from the pickle file

	Parameters

	filename (str) – pickle file to load

	Returns

	loaded joblist object

	Return type

	JobList

	
parameters

	List of parameters common to all jobs
:return: parameters
:rtype: dict

	
print_with_status(statusChange=None, nocolor=False, existingList=None)

	Returns the string representation of the dependency tree of
the Job List

	Parameters

	
	statusChange (List of strings) – List of changes in the list, supplied in set status

	nocolor (Boolean) – True if the result should not include color codes

	existingList (List of Job Objects) – External List of Jobs that will be printed, this excludes the inner list of jobs.

	Returns

	String representation

	Return type

	String

	
remove_rerun_only_jobs(notransitive=False)

	Removes all jobs to be run only in reruns

	
rerun(job_list_unparsed, monitor=False)

	Updates job list to rerun the jobs specified by a job list
:param job_list_unparsed: list of jobs to rerun
:type job_list_unparsed: list
:param monitor: if True, the job list will be monitored
:type monitor: bool

	
static retrieve_packages(BasicConfig, expid, current_jobs=None)

	Retrieves dictionaries that map the collection of packages in the experiment

	Parameters

	
	BasicConfig (Configuration Object) – Basic configuration

	expid (String) – Experiment ID

	current_jobs (list) – list of names of current jobs

	Returns

	job to package, package to job, package to package_id, package to symbol

	Return type

	Dictionary(Job Object, Package), Dictionary(Package, List of Job Objects), Dictionary(String, String), Dictionary(String, String)

	
static retrieve_times(status_code, name, tmp_path, make_exception=False, job_times=None, seconds=False, job_data_collection=None)

	Retrieve job timestamps from database.
:param status_code: Code of the Status of the job
:type status_code: Integer
:param name: Name of the job
:type name: String
:param tmp_path: Path to the tmp folder of the experiment
:type tmp_path: String
:param make_exception: flag for testing purposes
:type make_exception: Boolean
:param job_times: Detail from as_times.job_times for the experiment
:type job_times: Dictionary Key: job name, Value: 5-tuple (submit time, start time, finish time, status, detail id)
:return: minutes the job has been queuing, minutes the job has been running, and the text that represents it
:rtype: int, int, str

	
save()

	Persists the job list

	
sort_by_id()

	Returns a list of jobs sorted by id

	Returns

	jobs sorted by ID

	Return type

	list

	
sort_by_name()

	Returns a list of jobs sorted by name

	Returns

	jobs sorted by name

	Return type

	list

	
sort_by_status()

	Returns a list of jobs sorted by status

	Returns

	job sorted by status

	Return type

	list

	
sort_by_type()

	Returns a list of jobs sorted by type

	Returns

	job sorted by type

	Return type

	list

	
update_from_file(store_change=True)

	Updates jobs list on the fly from and update file
:param store_change: if True, renames the update file to avoid reloading it at the next iteration

	
update_genealogy(new=True, notransitive=False, update_structure=False)

	When we have created the job list, every type of job is created.
Update genealogy remove jobs that have no templates
:param new: if it is a new job list or not
:type new: bool

	
update_list(as_conf, store_change=True, fromSetStatus=False, submitter=None, first_time=False)

	Updates job list, resetting failed jobs and changing to READY all WAITING jobs with all parents COMPLETED

	Parameters

	as_conf (AutosubmitConfig) – autosubmit config object

	Returns

	True if job status were modified, False otherwise

	Return type

	bool

autosubmit.monitor

	
class autosubmit.monitor.monitor.Monitor

	Class to handle monitoring of Jobs at HPC.

	
static clean_plot(expid)

	Function to clean space on BasicConfig.LOCAL_ROOT_DIR/plot directory.
Removes all plots except last two.

	Parameters

	expid (str) – experiment’s identifier

	
static clean_stats(expid)

	Function to clean space on BasicConfig.LOCAL_ROOT_DIR/plot directory.
Removes all stats’ plots except last two.

	Parameters

	expid (str) – experiment’s identifier

	
static color_status(status)

	Return color associated to given status

	Parameters

	status (Status) – status

	Returns

	color

	Return type

	str

	
create_tree_list(expid, joblist, packages, groups, hide_groups=False)

	Create graph from joblist

	Parameters

	
	expid (str) – experiment’s identifier

	joblist (JobList) – joblist to plot

	Returns

	created graph

	Return type

	pydotplus.Dot

	
generate_output(expid, joblist, path, output_format='pdf', packages=None, show=False, groups={}, hide_groups=False, job_list_object=None)

	Plots graph for joblist and stores it in a file

	Parameters

	
	expid (str) – experiment’s identifier

	joblist (List of Job objects) – list of jobs to plot

	output_format (str (png, pdf, ps)) – file format for plot

	show (bool) – if true, will open the new plot with the default viewer

	job_list_object (JobList object) – Object that has the main txt generation method

	
generate_output_stats(expid, joblist, output_format='pdf', period_ini=None, period_fi=None, show=False, queue_time_fixes=None)

	Plots stats for joblist and stores it in a file

	Parameters

	
	expid (str) – experiment’s identifier

	joblist (JobList) – joblist to plot

	output_format (str (png, pdf, ps)) – file format for plot

	period_ini (datetime) – initial datetime of filtered period

	period_fi (datetime) – final datetime of filtered period

	show (bool) – if true, will open the new plot with the default viewer

	
generate_output_txt(expid, joblist, path, classictxt=False, job_list_object=None)

	Function that generates a representation of the jobs in a txt file
:param expid: experiment’s identifier
:type expid: str
:param joblist: experiment’s list of jobs
:type joblist: list
:param job_list_object: Object that has the main txt generation method
:type job_list_object: JobList object

	
static get_general_stats(expid)

	Returns all the options in the sections of the %expid%_GENERAL_STATS. Options with values larger than GENERAL_STATS_OPTION_MAX_LENGTH characters are not added.

	Parameters

	expid (str) – experiment’s identifier

	Returns

	list of tuples (section, ‘’), (option, value), (option, value), (section, ‘’), (option, value), …

	Return type

	list

autosubmit.platform

	
class autosubmit.platforms.ecplatform.EcPlatform(expid, name, config, scheduler)

	Bases: autosubmit.platforms.paramiko_platform.ParamikoPlatform

Class to manage queues with ecaccess

	Parameters

	
	expid (str) – experiment’s identifier

	scheduler (str (pbs, loadleveler)) – scheduler to use

	
check_Alljobs(job_list, as_conf, retries=5)

	Checks jobs running status
:param job_list: list of jobs
:type job_list: list
:param as_conf: autosubmit configuration
:type as_conf: autosubmit.config.config.Config
:param retries: retries
:type retries: int
:return: list of jobs with their status
:rtype: list

	
connect()

	In this case, it does nothing because connection is established for each command

	Returns

	True

	Return type

	bool

	
delete_file(filename)

	Deletes a file from this platform

	Parameters

	filename (str) – file name

	Returns

	True if successful or file does no exist

	Return type

	bool

	
get_checkjob_cmd(job_id)

	Returns command to check job status on remote platforms

	Parameters

	
	job_id – id of job to check

	job_id – int

	Returns

	command to check job status

	Return type

	str

	
get_file(filename, must_exist=True, relative_path='', ignore_log=False, wrapper_failed=False)

	Copies a file from the current platform to experiment’s tmp folder

	Parameters

	
	filename (str) – file name

	must_exist (bool) – If True, raises an exception if file can not be copied

	relative_path (str) – path inside the tmp folder

	Returns

	True if file is copied successfully, false otherwise

	Return type

	bool

	
get_mkdir_cmd()

	Gets command to create directories on HPC

	Returns

	command to create directories on HPC

	Return type

	str

	
get_ssh_output()

	Gets output from last command executed

	Returns

	output from last command

	Return type

	str

	
get_submit_cmd(job_script, job, hold=False, export='')

	Get command to add job to scheduler

	Parameters

	
	job_type –

	job_script – path to job script

	job_script – str

	hold – submit a job in a held status

	hold – boolean

	export – modules that should’ve downloaded

	export – string

	Returns

	command to submit job to platforms

	Return type

	str

	
get_submitted_job_id(output, x11=False)

	Parses submit command output to extract job id
:param output: output to parse
:type output: str
:return: job id
:rtype: str

	
jobs_in_queue()

	Returns empty list because ecacces does not support this command

	Returns

	empty list

	Return type

	list

	
move_file(src, dest, must_exist=False)

	Moves a file on the platform (includes .err and .out)
:param src: source name
:type src: str
:param dest: destination name
:param must_exist: ignore if file exist or not
:type dest: str

	
parse_job_output(output)

	Parses check job command output, so it can be interpreted by autosubmit

	Parameters

	output (str) – output to parse

	Returns

	job status

	Return type

	str

	
restore_connection()

	In this case, it does nothing because connection is established for each command

	Returns

	True

	Return type

	bool

	
send_command(command, ignore_log=False, x11=False)

	Sends given command to HPC

	Parameters

	command (str) – command to send

	Returns

	True if executed, False if failed

	Return type

	bool

	
send_file(filename, check=True)

	Sends a local file to the platform
:param filename: name of the file to send
:type filename: str

	
test_connection()

	In this case, it does nothing because connection is established for each command

	Returns

	True

	Return type

	bool

	
update_cmds()

	Updates commands for platforms

	
class autosubmit.platforms.lsfplatform.LsfPlatform(expid, name, config)

	Bases: autosubmit.platforms.paramiko_platform.ParamikoPlatform

Class to manage jobs to host using LSF scheduler

	Parameters

	expid (str) – experiment’s identifier

	
check_Alljobs(job_list, as_conf, retries=5)

	Checks jobs running status
:param job_list: list of jobs
:type job_list: list
:param as_conf: autosubmit configuration
:type as_conf: autosubmit.config.config.Config
:param retries: retries
:type retries: int
:return: list of jobs with their status
:rtype: list

	
get_checkjob_cmd(job_id)

	Returns command to check job status on remote platforms

	Parameters

	
	job_id – id of job to check

	job_id – int

	Returns

	command to check job status

	Return type

	str

	
get_mkdir_cmd()

	Gets command to create directories on HPC

	Returns

	command to create directories on HPC

	Return type

	str

	
get_submit_cmd(job_script, job, export='')

	Get command to add job to scheduler

	Parameters

	
	job_type –

	job_script – path to job script

	job_script – str

	hold – submit a job in a held status

	hold – boolean

	export – modules that should’ve downloaded

	export – string

	Returns

	command to submit job to platforms

	Return type

	str

	
get_submitted_job_id(output, x11=False)

	Parses submit command output to extract job id
:param output: output to parse
:type output: str
:return: job id
:rtype: str

	
parse_job_output(output)

	Parses check job command output, so it can be interpreted by autosubmit

	Parameters

	output (str) – output to parse

	Returns

	job status

	Return type

	str

	
update_cmds()

	Updates commands for platforms

	
class autosubmit.platforms.pbsplatform.PBSPlatform(expid, name, config, version)

	Bases: autosubmit.platforms.paramiko_platform.ParamikoPlatform

Class to manage jobs to host using PBS scheduler

	Parameters

	
	expid (str) – experiment’s identifier

	version (str) – scheduler version

	
check_Alljobs(job_list, as_conf, retries=5)

	Checks jobs running status
:param job_list: list of jobs
:type job_list: list
:param as_conf: autosubmit configuration
:type as_conf: autosubmit.config.config.Config
:param retries: retries
:type retries: int
:return: list of jobs with their status
:rtype: list

	
get_checkjob_cmd(job_id)

	Returns command to check job status on remote platforms

	Parameters

	
	job_id – id of job to check

	job_id – int

	Returns

	command to check job status

	Return type

	str

	
get_mkdir_cmd()

	Gets command to create directories on HPC

	Returns

	command to create directories on HPC

	Return type

	str

	
get_submit_cmd(job_script, job, export='')

	Get command to add job to scheduler

	Parameters

	
	job_type –

	job_script – path to job script

	job_script – str

	hold – submit a job in a held status

	hold – boolean

	export – modules that should’ve downloaded

	export – string

	Returns

	command to submit job to platforms

	Return type

	str

	
get_submitted_job_id(output, x11=False)

	Parses submit command output to extract job id
:param output: output to parse
:type output: str
:return: job id
:rtype: str

	
parse_job_output(output)

	Parses check job command output, so it can be interpreted by autosubmit

	Parameters

	output (str) – output to parse

	Returns

	job status

	Return type

	str

	
update_cmds()

	Updates commands for platforms

	
class autosubmit.platforms.sgeplatform.SgePlatform(expid, name, config)

	Bases: autosubmit.platforms.paramiko_platform.ParamikoPlatform

Class to manage jobs to host using SGE scheduler

	Parameters

	expid (str) – experiment’s identifier

	
check_Alljobs(job_list, as_conf, retries=5)

	Checks jobs running status
:param job_list: list of jobs
:type job_list: list
:param as_conf: autosubmit configuration
:type as_conf: autosubmit.config.config.Config
:param retries: retries
:type retries: int
:return: list of jobs with their status
:rtype: list

	
connect()

	In this case, it does nothing because connection is established for each command

	Returns

	True

	Return type

	bool

	
get_checkjob_cmd(job_id)

	Returns command to check job status on remote platforms

	Parameters

	
	job_id – id of job to check

	job_id – int

	Returns

	command to check job status

	Return type

	str

	
get_mkdir_cmd()

	Gets command to create directories on HPC

	Returns

	command to create directories on HPC

	Return type

	str

	
get_submit_cmd(job_script, job, export='')

	Get command to add job to scheduler

	Parameters

	
	job_type –

	job_script – path to job script

	job_script – str

	hold – submit a job in a held status

	hold – boolean

	export – modules that should’ve downloaded

	export – string

	Returns

	command to submit job to platforms

	Return type

	str

	
get_submitted_job_id(output, x11=False)

	Parses submit command output to extract job id
:param output: output to parse
:type output: str
:return: job id
:rtype: str

	
parse_job_output(output)

	Parses check job command output, so it can be interpreted by autosubmit

	Parameters

	output (str) – output to parse

	Returns

	job status

	Return type

	str

	
restore_connection()

	In this case, it does nothing because connection is established for each command

	Returns

	True

	Return type

	bool

	
test_connection()

	In this case, it does nothing because connection is established for each command

	Returns

	True

	Return type

	bool

	
update_cmds()

	Updates commands for platforms

	
class autosubmit.platforms.slurmplatform.SlurmPlatform(expid, name, config)

	Bases: autosubmit.platforms.paramiko_platform.ParamikoPlatform

Class to manage jobs to host using SLURM scheduler

	Parameters

	expid (str) – experiment’s identifier

	
get_checkAlljobs_cmd(jobs_id)

	Returns command to check jobs status on remote platforms

	Parameters

	
	jobs_id – id of jobs to check

	jobs_id – str

	Returns

	command to check job status

	Return type

	str

	
get_checkjob_cmd(job_id)

	Returns command to check job status on remote platforms

	Parameters

	
	job_id – id of job to check

	job_id – int

	Returns

	command to check job status

	Return type

	str

	
get_mkdir_cmd()

	Gets command to create directories on HPC

	Returns

	command to create directories on HPC

	Return type

	str

	
get_submit_cmd(job_script, job, hold=False, export='')

	Get command to add job to scheduler

	Parameters

	
	job_type –

	job_script – path to job script

	job_script – str

	hold – submit a job in a held status

	hold – boolean

	export – modules that should’ve downloaded

	export – string

	Returns

	command to submit job to platforms

	Return type

	str

	
get_submitted_job_id(outputlines, x11=False)

	Parses submit command output to extract job id
:param output: output to parse
:type output: str
:return: job id
:rtype: str

	
open_submit_script()

	Opens Submit script file

	
parse_Alljobs_output(output, job_id)

	Parses check jobs command output, so it can be interpreted by autosubmit
:param output: output to parse
:param job_id: select the job to parse
:type output: str
:return: job status
:rtype: str

	
parse_job_finish_data(output, packed)

	Parses the context of the sacct query to SLURM for a single job.
Only normal jobs return submit, start, finish, joules, ncpus, nnodes.

When a wrapper has finished, capture finish time.

	Parameters

	
	output (str) – The sacct output

	packed (bool) – true if job belongs to package

	Returns

	submit, start, finish, joules, ncpus, nnodes, detailed_data

	Return type

	int, int, int, int, int, int, json object (str)

	
parse_job_output(output)

	Parses check job command output, so it can be interpreted by autosubmit

	Parameters

	output (str) – output to parse

	Returns

	job status

	Return type

	str

	
submit_Script(hold=False)

	Sends a Submit file Script, execute it in the platform and retrieves the Jobs_ID of all jobs at once.

	Parameters

	hold (bool) – if True, the job will be held

	Returns

	job id for submitted jobs

	Return type

	list(str)

	
update_cmds()

	Updates commands for platforms

	
class autosubmit.platforms.locplatform.LocalPlatform(expid, name, config)

	Bases: autosubmit.platforms.paramiko_platform.ParamikoPlatform

Class to manage jobs to localhost

	Parameters

	expid (str) – experiment’s identifier

	
check_Alljobs(job_list, as_conf, retries=5)

	Checks jobs running status
:param job_list: list of jobs
:type job_list: list
:param as_conf: autosubmit configuration
:type as_conf: autosubmit.config.config.Config
:param retries: retries
:type retries: int
:return: list of jobs with their status
:rtype: list

	
check_file_exists(src, wrapper_failed=False)

	Moves a file on the platform
:param src: source name
:type src: str
:param: wrapper_failed: if True, the wrapper failed.
:type wrapper_failed: bool

	
connect()

	Creates ssh connection to host

	Returns

	True if connection is created, False otherwise

	Return type

	bool

	
delete_file(filename, del_cmd=False)

	Deletes a file from this platform

	Parameters

	filename (str) – file name

	Returns

	True if successful or file does no exist

	Return type

	bool

	
get_checkjob_cmd(job_id)

	Returns command to check job status on remote platforms

	Parameters

	
	job_id – id of job to check

	job_id – int

	Returns

	command to check job status

	Return type

	str

	
get_file(filename, must_exist=True, relative_path='', ignore_log=False, wrapper_failed=False)

	Copies a file from the current platform to experiment’s tmp folder

	Parameters

	
	filename (str) – file name

	must_exist (bool) – If True, raises an exception if file can not be copied

	relative_path (str) – path inside the tmp folder

	Returns

	True if file is copied successfully, false otherwise

	Return type

	bool

	
get_logs_files(exp_id, remote_logs)

	Overriding the parent’s implementation.
Do nothing because the log files are already in the local platform (redundancy).

	Parameters

	
	exp_id (str) – experiment id

	remote_logs ((str, str)) – names of the log files

	
get_mkdir_cmd()

	Gets command to create directories on HPC

	Returns

	command to create directories on HPC

	Return type

	str

	
get_ssh_output()

	Gets output from last command executed

	Returns

	output from last command

	Return type

	str

	
get_submit_cmd(job_script, job, hold=False, export='')

	Get command to add job to scheduler

	Parameters

	
	job_type –

	job_script – path to job script

	job_script – str

	hold – submit a job in a held status

	hold – boolean

	export – modules that should’ve downloaded

	export – string

	Returns

	command to submit job to platforms

	Return type

	str

	
get_submitted_job_id(output, x11=False)

	Parses submit command output to extract job id
:param output: output to parse
:type output: str
:return: job id
:rtype: str

	
move_file(src, dest, must_exist=False)

	Moves a file on the platform (includes .err and .out)
:param src: source name
:type src: str
:param dest: destination name
:param must_exist: ignore if file exist or not
:type dest: str

	
parse_job_output(output)

	Parses check job command output, so it can be interpreted by autosubmit

	Parameters

	output (str) – output to parse

	Returns

	job status

	Return type

	str

	
send_command(command, ignore_log=False, x11=False)

	Sends given command to HPC

	Parameters

	command (str) – command to send

	Returns

	True if executed, False if failed

	Return type

	bool

	
send_file(filename)

	Sends a local file to the platform
:param filename: name of the file to send
:type filename: str

	
test_connection()

	Test if the connection is still alive, reconnect if not.

	
update_cmds()

	Updates commands for platforms

Autosubmit GUI

Autosubmit GUI Main Page

Inside the Barcelona Supercomputing Internal Network you can find the latest version of Autosubmit GUI deployed for BSC users. It can be accessed by following the url http://bscesweb04.bsc.es/autosubmitapp/ or https://earth.bsc.es/autosubmitapp/. This is a graphic user interface that allows you to easily monitor your experiments and those of your colleagues. This Web App introduces many useful features for experiment monitoring, and we are continuously improving it.

Note

The Web App can also be accessed through the VPN Client provided by BSC.

When you enter the site, you will be presented with the following page:

[image: autosubmit guide]

16 Welcome page

Here you can search for any ongoing or past experiment by typing some text in the Search input box and pressing Search: the search engine will look for coincidences between your input string and any of the description, owner or name of the experiment fields. The results will be shown below ordered by status, experiments RUNNING will be shown in the first rows. You can also click on the Running button, and all the experiments that are currently running will be listed. The results will look like:

[image: result search]

17 Search Result

If you click on Show Detailed Data, summary data for each experiment (result) will be loaded. These are data details from the experiment run, useful to see its status at a glance. Progress bars and status will use different colors to highlight the important information.

[image: result search plus]

18 Search Result plus Detailed Data

For each experiment, you see the following data:

[image: result search plus description]

19 Description of Detailed Data

	Experiment Name

	Progress Bar: Shows completed jobs / total jobs. It turns red when there are failed jobs in the experiment, but Show Detailed Data should have been requested.

	Experiment Status: RUNNING or NOT RUNNING.

	Owner

	Experiment Description

	Refresh button: It will say Summary when the detailed data has not been requested. If it says Summary and you click on it, it will load detailed data for that experiment, otherwise it will refresh the existing detailed data.

	More button: Opens the Experiment Page.

	Average Queue Time for all jobs.

	Average Run Time for all jobs.

	Number of Running Jobs

	Number of Queuing Jobs

	Number of Submitted Jobs

	Number of Suspended Jobs

	Number of Failed Jobs: If there are Failed jobs, a list of the names of those jobs will be displayed.

[image: result search plus description + sim]

20 Average Times Feature

In experiments that include SIM jobs, you will also see the average queuing and running time for these jobs. In the latest version the time format has been updated to HH:mm:ss. The text for the SIM average follows the format avg. queue HH:mm:ss (M) | run HH:mm:ss (N) where M is the number of jobs considered for the avg. queue calculation and N is the number of jobs considered for run calculation.

After clicking on the MORE button, you will be presented with the Experiment Page, which is the main view that Autosubmit provides. These are its main components:

	Experiment Information

	Tree Representation
	Selection

	Monitoring

	Filter

	Advanced Filter

	Graph Representation
	Selection

	Wrappers Representation

	Monitoring

	Job Search

	Grouped by Date Member

	Grouped by Status

	Laplacian

	Autosubmit Log

	Performance Metrics

	Autosubmit Statistics

Important

To improve response times, Autosubmit GUI will try to store the dependency structure of your experiment in a database filed called structure_expid.db where expid is the name of your experiment. This file will be located in /esarchive/autosubmit/expid/pkl/.

Experiment Information

This component offers the main information about your experiment.

[image: experiment_view]

21 Experiment Information

At the top left you see the Autosubmit Searcher home link that will take you back to the Autosubmit GUI Main Page, next to it you see the Home link that serves the same purpose, then you see the About link that takes you to a page with important information about the application (including the link to this documentation). Then you see the experiment name and status, which is updated every 5 minutes. Next, you see the run history button, this button opens a panel that shows information about previous runs of the experiment, only works for experiments running the latest version of Autosubmit. Then, you see the esarchive status badge, it shows information about the current status of the esarchive file system.

At the bottom you see some relevant metadata, including the branch of the model that was used in the experiment, the HPC name targeted by the experiment, the owner, the version that this experiment us running on, the DB version of Autosubmit, and the number of jobs in the experiment.

On the center you see the Tree Representation, which is loaded automatically when you open this page.

Tree Representation

The Tree Representation offers a structured view of the experiment.

[image: Experiment Tree 1]

22 Experiment Tree Representation

The view is organized in groups by date, and date-member. Each group has a folder icon, and next to the icon you can find the progress of the group as completed / total jobs (when all the jobs in a group have been completed, a check symbol will appear); then, an indicator of how many jobs inside that group are RUNNING, QUEUING, or have FAILED. Furthermore, if wrappers exist in the experiment, independent groups will be added for each wrapper that will contain the list of jobs included in the corresponding wrapper. This implies that a job can be repeated: once inside its date-member group and once in its wrapper group.

Inside each group you will find the list of jobs that belong to that group. The jobs are shown following this format: job name + # job status + (+ queuing time +) + running time. Jobs that belong to a wrapper have also a badge with the code of the wrapper.

When you click on a Job, you can see on the right panel (Selection Panel) the following information:

	Start: Starting date.

	End: Ending date.

	Section: Also known as job type.

	Member

	Chunk

	Platform: Remote platform.

	Id: Id in the remote platform.

	Processors: Number of processors required by the job.

	Wallclock: Time requested by the job.

	Queue: Time spent in queue, in minutes.

	Run: Time spent running, in minutes.

	Status: Job status.

	Out: Button that opens a list of jobs that depend on the one selected.

	In: Button that opens a list of jobs on which the selected job depends.

	out path: Path to the .out log file.

	err path: Path to the .err log file.

	Submit: Submit time of the job (If applicable).

	Start: Start time of the job (If applicable).

	Finish: Finish time of the job (If applicable).

Important

Next to the out and err paths, you see the a Copy out/err button that copies the path to your clipboard. Then you see an eye symbol button, that when clicked will show that last 150 lines of the out/err file.

Selection

When you click on a job in the tree view, a Change Status button will appear in the top bar, if you click, you will be presented with the option to generate a change status command that can be run on autosubmit, or to generate a format that can be used to change the status of the job while the experiment is running.

You can select many jobs at the same time by maintaining CTRL pressed and clicking on the jobs, then the generated command will include all these jobs.

Monitoring

If the experiment status is RUNNING, you will see a button called Refresh at the top right corner. This button will update the information of the jobs in the tree if necessary. Next to this button, you will see the button Start Job Monitor. When you click on it, a live Job Monitor will be initialized and the status of the jobs and wrappers will be queried every minute, any change will be updated in the Tree View. Also, if the Job Monitor is running, the detected changes will be listed in a panel Monitor Panel below the Selection Panel. You can stop this process by clicking on the button Stop Job Monitor.

The button Clear Tree View will clear the Tree Representation. It is also a valid way to refresh the Tree View.

Filter

At the top left you can find the Filter text input box. Insert any string and the list will show only those jobs whose description coincides with that string. For example #COMPLETED will show only completed jobs, Wrapped will show only those jobs that belong to a wrapper, _fc0_ will show only those jobs that belong to the fc0 member. Press Clear to reset the filter. On the right side of this bar, you will see the total number of jobs, and the chunk unit used in the experiment.

Advanced Filter

It is possible to use the key char * to separate keywords in the name of the job, in order. For example:

	1850*fc0*_1_: List all the jobs that have the string 1850 and then at least 1 occurrence of the string fc0 and then at least 1 occurrence of the string _1_. This will effectively list all the jobs for the DATE that starts with 1850 for the member fc0 and the chunk _1_.

	000*_5: List all the jobs that have the string 000 followed by at least one occurrence of the string _5. This will effectively list all the jobs that have member 000 and chunk number that starts with the digit 5.

	000*_5*PREPROCVAR: It will also add the filter for jobs of type PREPROCVAR.

As you might infer, the logic is fairly straightforward: Start your string with the word or part of the word you are looking for, then add * and the word or part of the word that follows, and so on. The algorithm will split your string by * and then search for each part in order, once it finds the part in the title of the job, it takes a substring of the job title to not repeat the next search in the same string, it continues looking for the next part in the new reduced string, and so on.

You can extend this functionality considering that date, member, section, chunk names start with the symbol _ and finish with the same symbol.

Important

This view is designed to show a structured view of your experiment, if you want a more dependency oriented view that shows better the execution sequence of your jobs, you can refer to Graph Representation.

Graph Representation

The Graph Representation of the experiment offers a dependency oriented view.

[image: Experiment Graph 1]

23 Experiment Graph Representation

This view offers a graph representation of the experiments where a node represents a job and an edge represents a directed dependency relationship between nodes. To open it you must click on the button Classic, which is the basic representation that uses either GraphViz or an heuristic approach depending on experiment complexity; we explain the other options later.

Once the graph representation is loaded, it will focus on a relevant node according to some established rules. The color of each node represents the status of the job it represents: you can see a color guide at the bottom of the page in the form of buttons. If you click in any of those buttons, the graph will focus on the last node with that status, except in the case of WAITING where the graph will focus on the first one. You can navigate the graph in this way, but there are other navigation buttons at the left and right corners of the graph canvas. You can also use your mouse or trackpad to navigate the graph, zoom in or zoom out. Below each node you can see the job name of the job it represents.

Important

For some experiments you will get a well distributed and generally good looking graph representation, for others you get a more straightforward representation. It depends on the size and dependency complexity of your experiments, not all experiments can be modeled as a good looking graph in reasonable time.

When you click on a node, you can see on the right panel (Selection Panel) the following information:

	Start: Starting date.

	End: Ending date.

	Section: Also known as job type.

	Member

	Chunk

	Platform: Remote platform.

	Id: Id in the remote platform.

	Processors: Number of processors required by the job.

	Wallclock: Time requested by the job.

	Queue: Time spent in queue, in minutes.

	Run: Time spent running, in minutes.

	Status: Job status.

	Out: Button that opens a list of jobs that depend on the one selected.

	In: Button that opens a list of jobs on which the selected job depends.

	out path: Path to the .out log file.

	err path: Path to the .err log file.

	Submit: Submit time of the job (If applicable).

	Start: Start time of the job (If applicable).

	Finish: Finish time of the job (If applicable).

Important

Next to the out and err paths, you see the a Copy out/err button that copies the path to your clipboard. Then you see an eye symbol button, that when clicked will show that last 150 lines of the out/err file.

Selection

When you click on a node in the tree view, a Change Status button will appear in the top bar, if you click, you will be presented with the option to generate a change status command that can be run on autosubmit, or to generate a format that can be used to change the status of the job while the experiment is running.

You can select many nodes at the same time by maintaining CTRL pressed and clicking on the nodes, then the generated command will include all these jobs.

Wrappers Representation

Wrappers are an important feature of Autosubmit, and as such, it should be possible to visualize them in the graph representation.

[image: Experiment Graph Wrapper]

24 Wrapper Graph Representation

Wrappers are represented by nodes that have dashed border, hexagon or square shape (no difference between them), and that share green background edges. On the right side of the graph you can find the Wrappers Tab and it will display a list of the existing wrappers as buttons. If you click on any of these buttons, the nodes that belong to that wrapper will be highlighted.

Monitoring

If the experiment is RUNNING you will see at the top right corner the button Start Job Monitor. When you click on it, a live Job Monitor will be initialized and the status of the jobs and wrappers will be queried every minute, any change will be updated in the graph. Also, if the Job Monitor is running, the detected changes will be listed in a panel Monitor Panel below the Selection Panel. You can stop this process by clicking on the button Stop Job Monitor.

Important

While this is a good option to monitor the progress of your experiment, you can also use the Autosubmit Log.

Job Search

[image: Job Search]

25 Job Search in Graph

On top of the graph you will see an input text box following by the button Search by Job Name. Insert into that box the string that you want to find and the engine will build an internal list of those jobs whose name coincides with that string. For example _LOCAL_ will show only jobs whose title contain the that string. Buttons Previous and Next will appear and next to them the number of jobs that coincide with your search, you can use these buttons to traverse the graph highlighting the nodes included in the resulting internal list.

Grouped by Date Member

By clicking on the button Grouped by D-M you get a graph representation where the nodes are clustered by date and member. For example, if your experiment has only one starting date and one member, then you will have only one cluster in this view. These clusters are represented by rectangular boxes whose color gives a general idea of the status of the jobs inside it.

Important

You can double click on any cluster to “open” it, meaning that the nodes that belong to that cluster will be freed and positioned individually.

Grouped by Status

By clicking on the button Grouped by Status you get a graph representation where the nodes are clustered by status into 3 clusters: WAITING, COMPLETED, and SUSPENDED. Same rules mentioned for Grouped by Date Member apply.

Laplacian

By clicking on the button Laplacian you get a graph representation where the (x,y) coordinates of each node are calculated based on the second and third smallest eigenvector of the Graph Laplacian. All functionality is supported.

Autosubmit Log

When you click on the Log tab, you will see the button Show Log:

[image: Experiment Log 1]

26 Experiment Log

Important

The main Autosubmit log is usually stored in the folder /tmp/ of your experiment, and this is the first path the system will scan.

When you click on the Show Log button, the last 150 lines of the log will be displayed:

[image: Experiment Log 2]

27 Experiment Log Open

At the top of the log you will see the name of the log file that is being displayed along with the timestamp of the last time the log was requested, and to the right you see this timestamp in datetime format.

If the experiment is currently running, the log will be updated periodically to keep you up with recent updates in the experiment execution. It is possible to scroll this view.

If you click on Hide Log the log will be cleared and the periodic updates will stop.

Performance Metrics

The Performance Metrics tabs offers a set of metrics that try to measure the efficiency of the simulation performed, and other aspects of it.

[image: Performance Metrics 1]

28 Performance Metrics Tab

On the left you have the values of the main performance metrics that apply to the experiment. Then, on the right, you see the list of jobs considered for this calculation with their data, also, SYPD and ASYPD are calculated individually for these jobs. This list is scrollable.

You can also access a Show warnings button that opens a list of important information that might affect the calculation of the metrics. You can click again on this button to close the list.

Further information about the metrics is included in the tab.

Autosubmit Statistics

When you click on the Statistics tab, you will see two input boxes: Section and Hours, followed by the button Get Statistics:

[image: Experiment Stat 1]

29 Experiment Statistics

There is also a brief explanation of the input fields and expected result. Basically, Section allows you to narrow your search to certain job types, and Hours allows you to set a time limit to look into the past in hours.

In this example we have queried 3 hours into the past:

[image: Experiment Stat 2]

30 Experiment Statistics (Last 3 hours)

Click on the button Clear Statistics to clear the results and submit another query.

Important

For more details about Autosubmit statistics, refer to: How to monitor job statistics.

 Python Module Index

 a

 		 	

 		
 a	

 	[image: -]
 	
 autosubmit	

 	
 	
 autosubmit.autosubmit	

 	
 	
 autosubmit.config.basicConfig	

 	
 	
 autosubmit.config.config_common	

 	
 	
 autosubmit.database.db_common	

 	
 	
 autosubmit.git.autosubmit_git	

 	
 	
 autosubmit.job.job	

 	
 	
 autosubmit.job.job_common	

 	
 	
 autosubmit.job.job_list	

 	
 	
 autosubmit.monitor.monitor	

 	
 	
 autosubmit.platforms.ecplatform	

 	
 	
 autosubmit.platforms.locplatform	

 	
 	
 autosubmit.platforms.lsfplatform	

 	
 	
 autosubmit.platforms.pbsplatform	

 	
 	
 autosubmit.platforms.sgeplatform	

 	
 	
 autosubmit.platforms.slurmplatform	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | W

A

 	
 	add_argument() (autosubmit.autosubmit.MyParser method)

 	add_edge_info() (autosubmit.job.job.Job method)

 	add_logs() (autosubmit.job.job_list.JobList method)

 	add_parent() (autosubmit.job.job.Job method)

 	archive() (autosubmit.autosubmit.Autosubmit static method)

 	Autosubmit (class in autosubmit.autosubmit)

 	autosubmit.autosubmit (module)

 	autosubmit.config.basicConfig (module)

 	autosubmit.config.config_common (module)

 	autosubmit.database.db_common (module)

 	autosubmit.git.autosubmit_git (module)

 	
 	autosubmit.job.job (module)

 	autosubmit.job.job_common (module)

 	autosubmit.job.job_list (module)

 	autosubmit.monitor.monitor (module)

 	autosubmit.platforms.ecplatform (module)

 	autosubmit.platforms.locplatform (module)

 	autosubmit.platforms.lsfplatform (module)

 	autosubmit.platforms.pbsplatform (module)

 	autosubmit.platforms.sgeplatform (module)

 	autosubmit.platforms.slurmplatform (module)

 	AutosubmitConfig (class in autosubmit.config.config_common)

 	AutosubmitGit (class in autosubmit.git.autosubmit_git)

B

 	
 	backup_load() (autosubmit.job.job_list.JobList method)

 	
 	backup_save() (autosubmit.job.job_list.JobList method)

 	BasicConfig (class in autosubmit.config.basicConfig)

C

 	
 	change_status() (autosubmit.autosubmit.Autosubmit static method)

 	check() (autosubmit.autosubmit.Autosubmit static method)

 	check_Alljobs() (autosubmit.platforms.ecplatform.EcPlatform method)

 	(autosubmit.platforms.locplatform.LocalPlatform method)

 	(autosubmit.platforms.lsfplatform.LsfPlatform method)

 	(autosubmit.platforms.pbsplatform.PBSPlatform method)

 	(autosubmit.platforms.sgeplatform.SgePlatform method)

 	check_autosubmit_conf() (autosubmit.config.config_common.AutosubmitConfig method)

 	check_commit() (autosubmit.git.autosubmit_git.AutosubmitGit static method)

 	check_completion() (autosubmit.job.job.Job method)

 	check_conf_files() (autosubmit.config.config_common.AutosubmitConfig method)

 	check_db() (in module autosubmit.database.db_common)

 	check_end_time() (autosubmit.job.job.Job method)

 	check_expdef_conf() (autosubmit.config.config_common.AutosubmitConfig method)

 	check_experiment_exists() (in module autosubmit.database.db_common)

 	check_file_exists() (autosubmit.platforms.locplatform.LocalPlatform method)

 	check_jobs_conf() (autosubmit.config.config_common.AutosubmitConfig method)

 	check_platforms_conf() (autosubmit.config.config_common.AutosubmitConfig method)

 	check_proj() (autosubmit.config.config_common.AutosubmitConfig method)

 	check_proj_file() (autosubmit.config.config_common.AutosubmitConfig method)

 	check_retrials_end_time() (autosubmit.job.job.Job method)

 	check_retrials_start_time() (autosubmit.job.job.Job method)

 	check_retrials_submit_time() (autosubmit.job.job.Job method)

 	check_running_after() (autosubmit.job.job.Job method)

 	
 	check_script() (autosubmit.job.job.Job method)

 	check_scripts() (autosubmit.job.job_list.JobList method)

 	check_start_time() (autosubmit.job.job.Job method)

 	check_started_after() (autosubmit.job.job.Job method)

 	children (autosubmit.job.job.Job attribute)

 	children_names_str (autosubmit.job.job.Job attribute)

 	clean() (autosubmit.autosubmit.Autosubmit static method)

 	clean_git() (autosubmit.git.autosubmit_git.AutosubmitGit static method)

 	clean_plot() (autosubmit.monitor.monitor.Monitor static method)

 	clean_stats() (autosubmit.monitor.monitor.Monitor static method)

 	clone_repository() (autosubmit.git.autosubmit_git.AutosubmitGit static method)

 	close_conn() (in module autosubmit.database.db_common)

 	color_status() (autosubmit.monitor.monitor.Monitor static method)

 	compare_by_id() (autosubmit.job.job.Job method)

 	compare_by_name() (autosubmit.job.job.Job method)

 	compare_by_status() (autosubmit.job.job.Job method)

 	configure() (autosubmit.autosubmit.Autosubmit static method)

 	configure_dialog() (autosubmit.autosubmit.Autosubmit static method)

 	connect() (autosubmit.platforms.ecplatform.EcPlatform method)

 	(autosubmit.platforms.locplatform.LocalPlatform method)

 	(autosubmit.platforms.sgeplatform.SgePlatform method)

 	create() (autosubmit.autosubmit.Autosubmit static method)

 	create_db() (in module autosubmit.database.db_common)

 	create_script() (autosubmit.job.job.Job method)

 	create_tree_list() (autosubmit.monitor.monitor.Monitor method)

D

 	
 	database_fix() (autosubmit.autosubmit.Autosubmit static method)

 	DbException

 	deep_normalize() (autosubmit.config.config_common.AutosubmitConfig method)

 	deep_parameters_export() (autosubmit.config.config_common.AutosubmitConfig method)

 	deep_read_loops() (autosubmit.config.config_common.AutosubmitConfig method)

 	deep_update() (autosubmit.config.config_common.AutosubmitConfig method)

 	
 	delete() (autosubmit.autosubmit.Autosubmit static method)

 	delete_child() (autosubmit.job.job.Job method)

 	delete_experiment() (in module autosubmit.database.db_common)

 	delete_file() (autosubmit.platforms.ecplatform.EcPlatform method)

 	(autosubmit.platforms.locplatform.LocalPlatform method)

 	delete_parent() (autosubmit.job.job.Job method)

 	describe() (autosubmit.autosubmit.Autosubmit static method)

E

 	
 	EcPlatform (class in autosubmit.platforms.ecplatform)

 	error() (autosubmit.autosubmit.MyParser method)

 	experiment_data (autosubmit.autosubmit.Autosubmit attribute)

 	
 	experiment_file (autosubmit.config.config_common.AutosubmitConfig attribute)

 	expid (autosubmit.job.job_list.JobList attribute)

 	expid() (autosubmit.autosubmit.Autosubmit static method)

F

 	
 	file_modified() (autosubmit.config.config_common.AutosubmitConfig method)

G

 	
 	generate() (autosubmit.job.job_list.JobList method)

 	generate_output() (autosubmit.monitor.monitor.Monitor method)

 	generate_output_stats() (autosubmit.monitor.monitor.Monitor method)

 	generate_output_txt() (autosubmit.monitor.monitor.Monitor method)

 	generate_scripts_andor_wrappers() (autosubmit.autosubmit.Autosubmit static method)

 	get_active() (autosubmit.job.job_list.JobList method)

 	get_all() (autosubmit.job.job_list.JobList method)

 	get_autosubmit_version() (in module autosubmit.database.db_common)

 	get_checkAlljobs_cmd() (autosubmit.platforms.slurmplatform.SlurmPlatform method)

 	get_checkjob_cmd() (autosubmit.platforms.ecplatform.EcPlatform method)

 	(autosubmit.platforms.locplatform.LocalPlatform method)

 	(autosubmit.platforms.lsfplatform.LsfPlatform method)

 	(autosubmit.platforms.pbsplatform.PBSPlatform method)

 	(autosubmit.platforms.sgeplatform.SgePlatform method)

 	(autosubmit.platforms.slurmplatform.SlurmPlatform method)

 	get_chunk_ini() (autosubmit.config.config_common.AutosubmitConfig method)

 	get_chunk_list() (autosubmit.job.job_list.JobList method)

 	get_chunk_size() (autosubmit.config.config_common.AutosubmitConfig method)

 	get_chunk_size_unit() (autosubmit.config.config_common.AutosubmitConfig method)

 	get_communications_library() (autosubmit.config.config_common.AutosubmitConfig method)

 	get_completed() (autosubmit.job.job_list.JobList method)

 	get_copy_remote_logs() (autosubmit.config.config_common.AutosubmitConfig method)

 	get_current_host() (autosubmit.config.config_common.AutosubmitConfig method)

 	get_current_project() (autosubmit.config.config_common.AutosubmitConfig method)

 	get_current_user() (autosubmit.config.config_common.AutosubmitConfig method)

 	get_custom_directives() (autosubmit.config.config_common.AutosubmitConfig method)

 	get_date_list() (autosubmit.config.config_common.AutosubmitConfig method)

 	(autosubmit.job.job_list.JobList method)

 	get_default_job_type() (autosubmit.config.config_common.AutosubmitConfig method)

 	get_delay_retry_time() (autosubmit.config.config_common.AutosubmitConfig method)

 	get_delayed() (autosubmit.job.job_list.JobList method)

 	get_dependencies() (autosubmit.config.config_common.AutosubmitConfig method)

 	get_disable_recovery_threads() (autosubmit.config.config_common.AutosubmitConfig method)

 	get_export() (autosubmit.config.config_common.AutosubmitConfig method)

 	get_extensible_wallclock() (autosubmit.config.config_common.AutosubmitConfig method)

 	get_failed() (autosubmit.job.job_list.JobList method)

 	get_fetch_single_branch() (autosubmit.config.config_common.AutosubmitConfig method)

 	get_file() (autosubmit.platforms.ecplatform.EcPlatform method)

 	(autosubmit.platforms.locplatform.LocalPlatform method)

 	get_file_jobs_conf() (autosubmit.config.config_common.AutosubmitConfig method)

 	get_file_project_conf() (autosubmit.config.config_common.AutosubmitConfig method)

 	get_finished() (autosubmit.job.job_list.JobList method)

 	get_full_config_as_json() (autosubmit.config.config_common.AutosubmitConfig method)

 	get_general_stats() (autosubmit.monitor.monitor.Monitor static method)

 	get_git_project_branch() (autosubmit.config.config_common.AutosubmitConfig method)

 	get_git_project_commit() (autosubmit.config.config_common.AutosubmitConfig method)

 	get_git_project_origin() (autosubmit.config.config_common.AutosubmitConfig method)

 	get_git_remote_project_root() (autosubmit.config.config_common.AutosubmitConfig method)

 	get_held_jobs() (autosubmit.job.job_list.JobList method)

 	get_in_queue() (autosubmit.job.job_list.JobList method)

 	get_job_by_name() (autosubmit.job.job_list.JobList method)

 	get_job_list() (autosubmit.job.job_list.JobList method)

 	get_job_names() (autosubmit.job.job_list.JobList method)

 	get_job_related() (autosubmit.job.job_list.JobList method)

 	get_jobs_by_section() (autosubmit.job.job_list.JobList method)

 	get_jobs_sections() (autosubmit.config.config_common.AutosubmitConfig method)

 	get_last_retrials() (autosubmit.job.job.Job method)

 	get_local_project_path() (autosubmit.config.config_common.AutosubmitConfig method)

 	get_logs() (autosubmit.job.job_list.JobList method)

 	get_logs_files() (autosubmit.platforms.locplatform.LocalPlatform method)

 	get_mails_to() (autosubmit.config.config_common.AutosubmitConfig method)

 	get_max_processors() (autosubmit.config.config_common.AutosubmitConfig method)

 	get_max_waiting_jobs() (autosubmit.config.config_common.AutosubmitConfig method)

 	get_max_wallclock() (autosubmit.config.config_common.AutosubmitConfig method)

 	get_max_wrapped_jobs() (autosubmit.config.config_common.AutosubmitConfig method)

 	get_max_wrapped_jobs_horizontal() (autosubmit.config.config_common.AutosubmitConfig method)

 	get_max_wrapped_jobs_vertical() (autosubmit.config.config_common.AutosubmitConfig method)

 	get_member_list() (autosubmit.config.config_common.AutosubmitConfig method)

 	(autosubmit.job.job_list.JobList method)

 	get_memory() (autosubmit.config.config_common.AutosubmitConfig method)

 	get_memory_per_task() (autosubmit.config.config_common.AutosubmitConfig method)

 	get_migrate_duplicate() (autosubmit.config.config_common.AutosubmitConfig method)

 	get_migrate_host_to() (autosubmit.config.config_common.AutosubmitConfig method)

 	get_migrate_project_to() (autosubmit.config.config_common.AutosubmitConfig method)

 	get_migrate_user_to() (autosubmit.config.config_common.AutosubmitConfig method)

 	get_min_wrapped_jobs() (autosubmit.config.config_common.AutosubmitConfig method)

 	get_min_wrapped_jobs_horizontal() (autosubmit.config.config_common.AutosubmitConfig method)

 	
 	get_min_wrapped_jobs_vertical() (autosubmit.config.config_common.AutosubmitConfig method)

 	get_mkdir_cmd() (autosubmit.platforms.ecplatform.EcPlatform method)

 	(autosubmit.platforms.locplatform.LocalPlatform method)

 	(autosubmit.platforms.lsfplatform.LsfPlatform method)

 	(autosubmit.platforms.pbsplatform.PBSPlatform method)

 	(autosubmit.platforms.sgeplatform.SgePlatform method)

 	(autosubmit.platforms.slurmplatform.SlurmPlatform method)

 	get_not_in_queue() (autosubmit.job.job_list.JobList method)

 	get_notifications() (autosubmit.config.config_common.AutosubmitConfig method)

 	get_notifications_crash() (autosubmit.config.config_common.AutosubmitConfig method)

 	get_num_chunks() (autosubmit.config.config_common.AutosubmitConfig method)

 	get_ordered_jobs_by_date_member() (autosubmit.job.job_list.JobList method)

 	get_output_type() (autosubmit.config.config_common.AutosubmitConfig method)

 	get_parse_two_step_start() (autosubmit.config.config_common.AutosubmitConfig method)

 	get_parser() (autosubmit.config.config_common.AutosubmitConfig static method)

 	get_platform() (autosubmit.config.config_common.AutosubmitConfig method)

 	get_prepared() (autosubmit.job.job_list.JobList method)

 	get_processors() (autosubmit.config.config_common.AutosubmitConfig method)

 	get_project_destination() (autosubmit.config.config_common.AutosubmitConfig method)

 	get_project_dir() (autosubmit.config.config_common.AutosubmitConfig method)

 	get_project_type() (autosubmit.config.config_common.AutosubmitConfig method)

 	get_queuing() (autosubmit.job.job_list.JobList method)

 	get_ready() (autosubmit.job.job_list.JobList method)

 	get_remote_dependencies() (autosubmit.config.config_common.AutosubmitConfig method)

 	get_rerun() (autosubmit.config.config_common.AutosubmitConfig method)

 	get_rerun_jobs() (autosubmit.config.config_common.AutosubmitConfig method)

 	get_retrials() (autosubmit.config.config_common.AutosubmitConfig method)

 	get_running() (autosubmit.job.job_list.JobList method)

 	get_safetysleeptime() (autosubmit.config.config_common.AutosubmitConfig method)

 	get_scratch_free_space() (autosubmit.config.config_common.AutosubmitConfig method)

 	get_section() (autosubmit.config.config_common.AutosubmitConfig method)

 	get_skipped() (autosubmit.job.job_list.JobList method)

 	get_ssh_output() (autosubmit.platforms.ecplatform.EcPlatform method)

 	(autosubmit.platforms.locplatform.LocalPlatform method)

 	get_storage_type() (autosubmit.config.config_common.AutosubmitConfig method)

 	get_submit_cmd() (autosubmit.platforms.ecplatform.EcPlatform method)

 	(autosubmit.platforms.locplatform.LocalPlatform method)

 	(autosubmit.platforms.lsfplatform.LsfPlatform method)

 	(autosubmit.platforms.pbsplatform.PBSPlatform method)

 	(autosubmit.platforms.sgeplatform.SgePlatform method)

 	(autosubmit.platforms.slurmplatform.SlurmPlatform method)

 	get_submitted() (autosubmit.job.job_list.JobList method)

 	get_submitted_job_id() (autosubmit.platforms.ecplatform.EcPlatform method)

 	(autosubmit.platforms.locplatform.LocalPlatform method)

 	(autosubmit.platforms.lsfplatform.LsfPlatform method)

 	(autosubmit.platforms.pbsplatform.PBSPlatform method)

 	(autosubmit.platforms.sgeplatform.SgePlatform method)

 	(autosubmit.platforms.slurmplatform.SlurmPlatform method)

 	get_submodules_list() (autosubmit.config.config_common.AutosubmitConfig method)

 	get_suspended() (autosubmit.job.job_list.JobList method)

 	get_svn_project_revision() (autosubmit.config.config_common.AutosubmitConfig method)

 	get_svn_project_url() (autosubmit.config.config_common.AutosubmitConfig method)

 	get_synchronize() (autosubmit.config.config_common.AutosubmitConfig method)

 	get_tasks() (autosubmit.config.config_common.AutosubmitConfig method)

 	get_threads() (autosubmit.config.config_common.AutosubmitConfig method)

 	get_total_jobs() (autosubmit.config.config_common.AutosubmitConfig method)

 	get_uncompleted() (autosubmit.job.job_list.JobList method)

 	get_uncompleted_and_not_waiting() (autosubmit.job.job_list.JobList method)

 	get_unknown() (autosubmit.job.job_list.JobList method)

 	get_unsubmitted() (autosubmit.job.job_list.JobList method)

 	get_version() (autosubmit.config.config_common.AutosubmitConfig method)

 	get_waiting() (autosubmit.job.job_list.JobList method)

 	get_waiting_remote_dependencies() (autosubmit.job.job_list.JobList method)

 	get_wallclock() (autosubmit.config.config_common.AutosubmitConfig method)

 	get_wchunkinc() (autosubmit.config.config_common.AutosubmitConfig method)

 	get_wrapper_check_time() (autosubmit.config.config_common.AutosubmitConfig method)

 	get_wrapper_export() (autosubmit.config.config_common.AutosubmitConfig method)

 	get_wrapper_jobs() (autosubmit.config.config_common.AutosubmitConfig method)

 	get_wrapper_machinefiles() (autosubmit.config.config_common.AutosubmitConfig method)

 	get_wrapper_method() (autosubmit.config.config_common.AutosubmitConfig method)

 	get_wrapper_policy() (autosubmit.config.config_common.AutosubmitConfig method)

 	get_wrapper_queue() (autosubmit.config.config_common.AutosubmitConfig method)

 	get_wrapper_retrials() (autosubmit.config.config_common.AutosubmitConfig method)

 	get_wrapper_type() (autosubmit.config.config_common.AutosubmitConfig method)

 	get_wrappers() (autosubmit.config.config_common.AutosubmitConfig method)

 	get_x11() (autosubmit.config.config_common.AutosubmitConfig method)

 	get_x11_jobs() (autosubmit.config.config_common.AutosubmitConfig method)

 	graph (autosubmit.job.job_list.JobList attribute)

H

 	
 	has_children() (autosubmit.job.job.Job method)

 	
 	has_parents() (autosubmit.job.job.Job method)

I

 	
 	inc_fail_count() (autosubmit.job.job.Job method)

 	increase_wallclock_by_chunk() (in module autosubmit.job.job_common)

 	inspect() (autosubmit.autosubmit.Autosubmit static method)

 	install() (autosubmit.autosubmit.Autosubmit static method)

 	
 	is_a_completed_retrial() (autosubmit.job.job.Job static method)

 	is_ancestor() (autosubmit.job.job.Job method)

 	is_over_wallclock() (autosubmit.job.job.Job method)

 	is_parent() (autosubmit.job.job.Job method)

J

 	
 	Job (class in autosubmit.job.job)

 	JobList (class in autosubmit.job.job_list)

 	
 	jobs_file (autosubmit.config.config_common.AutosubmitConfig attribute)

 	jobs_in_queue() (autosubmit.platforms.ecplatform.EcPlatform method)

L

 	
 	last_name_used() (in module autosubmit.database.db_common)

 	load() (autosubmit.job.job_list.JobList method)

 	load_file() (autosubmit.job.job_list.JobList static method)

 	load_parameters() (autosubmit.config.config_common.AutosubmitConfig method)

 	load_platform_parameters() (autosubmit.config.config_common.AutosubmitConfig method)

 	
 	load_section_parameters() (autosubmit.config.config_common.AutosubmitConfig method)

 	LocalPlatform (class in autosubmit.platforms.locplatform)

 	log_job() (autosubmit.job.job.Job method)

 	long_name (autosubmit.job.job.Job attribute)

 	LsfPlatform (class in autosubmit.platforms.lsfplatform)

M

 	
 	migrate() (autosubmit.autosubmit.Autosubmit static method)

 	Monitor (class in autosubmit.monitor.monitor)

 	monitor() (autosubmit.autosubmit.Autosubmit static method)

 	
 	move_file() (autosubmit.platforms.ecplatform.EcPlatform method)

 	(autosubmit.platforms.locplatform.LocalPlatform method)

 	MyParser (class in autosubmit.autosubmit)

N

 	
 	normalize_variables() (autosubmit.config.config_common.AutosubmitConfig method)

O

 	
 	open_conn() (in module autosubmit.database.db_common)

 	
 	open_submit_script() (autosubmit.platforms.slurmplatform.SlurmPlatform method)

P

 	
 	parameters (autosubmit.job.job_list.JobList attribute)

 	parents (autosubmit.job.job.Job attribute)

 	parse_Alljobs_output() (autosubmit.platforms.slurmplatform.SlurmPlatform method)

 	parse_args() (autosubmit.autosubmit.Autosubmit static method)

 	parse_job_finish_data() (autosubmit.platforms.slurmplatform.SlurmPlatform method)

 	parse_job_output() (autosubmit.platforms.ecplatform.EcPlatform method)

 	(autosubmit.platforms.locplatform.LocalPlatform method)

 	(autosubmit.platforms.lsfplatform.LsfPlatform method)

 	(autosubmit.platforms.pbsplatform.PBSPlatform method)

 	(autosubmit.platforms.sgeplatform.SgePlatform method)

 	(autosubmit.platforms.slurmplatform.SlurmPlatform method)

 	
 	parse_output_number() (in module autosubmit.job.job_common)

 	PBSPlatform (class in autosubmit.platforms.pbsplatform)

 	pkl_fix() (autosubmit.autosubmit.Autosubmit static method)

 	platform (autosubmit.job.job.Job attribute)

 	platforms_file (autosubmit.config.config_common.AutosubmitConfig attribute)

 	platforms_parser (autosubmit.config.config_common.AutosubmitConfig attribute)

 	print_job() (autosubmit.job.job.Job method)

 	print_parameters() (autosubmit.job.job.Job method)

 	print_with_status() (autosubmit.job.job_list.JobList method)

 	project_file (autosubmit.config.config_common.AutosubmitConfig attribute)

Q

 	
 	queue (autosubmit.job.job.Job attribute)

R

 	
 	read() (autosubmit.config.basicConfig.BasicConfig static method)

 	recovery() (autosubmit.autosubmit.Autosubmit static method)

 	refresh() (autosubmit.autosubmit.Autosubmit static method)

 	reload() (autosubmit.config.config_common.AutosubmitConfig method)

 	remove_redundant_parents() (autosubmit.job.job.Job method)

 	remove_rerun_only_jobs() (autosubmit.job.job_list.JobList method)

 	report() (autosubmit.autosubmit.Autosubmit static method)

 	
 	rerun() (autosubmit.job.job_list.JobList method)

 	rerun_recovery() (autosubmit.autosubmit.Autosubmit static method)

 	restore_connection() (autosubmit.platforms.ecplatform.EcPlatform method)

 	(autosubmit.platforms.sgeplatform.SgePlatform method)

 	retrieve_packages() (autosubmit.job.job_list.JobList static method)

 	retrieve_times() (autosubmit.job.job_list.JobList static method)

 	run_experiment() (autosubmit.autosubmit.Autosubmit static method)

S

 	
 	save() (autosubmit.job.job_list.JobList method)

 	save_experiment() (in module autosubmit.database.db_common)

 	send_command() (autosubmit.platforms.ecplatform.EcPlatform method)

 	(autosubmit.platforms.locplatform.LocalPlatform method)

 	send_file() (autosubmit.platforms.ecplatform.EcPlatform method)

 	(autosubmit.platforms.locplatform.LocalPlatform method)

 	set_expid() (autosubmit.config.config_common.AutosubmitConfig method)

 	set_git_project_commit() (autosubmit.config.config_common.AutosubmitConfig method)

 	set_new_host() (autosubmit.config.config_common.AutosubmitConfig method)

 	set_new_project() (autosubmit.config.config_common.AutosubmitConfig method)

 	set_new_user() (autosubmit.config.config_common.AutosubmitConfig method)

 	set_platform() (autosubmit.config.config_common.AutosubmitConfig method)

 	set_safetysleeptime() (autosubmit.config.config_common.AutosubmitConfig method)

 	set_status() (autosubmit.autosubmit.Autosubmit static method)

 	set_version() (autosubmit.config.config_common.AutosubmitConfig method)

 	SgePlatform (class in autosubmit.platforms.sgeplatform)

 	
 	signal_handler() (in module autosubmit.autosubmit)

 	signal_handler_create() (in module autosubmit.autosubmit)

 	SlurmPlatform (class in autosubmit.platforms.slurmplatform)

 	sort_by_id() (autosubmit.job.job_list.JobList method)

 	sort_by_name() (autosubmit.job.job_list.JobList method)

 	sort_by_status() (autosubmit.job.job_list.JobList method)

 	sort_by_type() (autosubmit.job.job_list.JobList method)

 	statistics() (autosubmit.autosubmit.Autosubmit static method)

 	StatisticsSnippetBash (class in autosubmit.job.job_common)

 	StatisticsSnippetEmpty (class in autosubmit.job.job_common)

 	StatisticsSnippetPython (class in autosubmit.job.job_common)

 	StatisticsSnippetR (class in autosubmit.job.job_common)

 	Status (class in autosubmit.job.job_common)

 	status_str (autosubmit.job.job.Job attribute)

 	submit_ready_jobs() (autosubmit.autosubmit.Autosubmit static method)

 	submit_Script() (autosubmit.platforms.slurmplatform.SlurmPlatform method)

T

 	
 	test() (autosubmit.autosubmit.Autosubmit static method)

 	test_connection() (autosubmit.platforms.ecplatform.EcPlatform method)

 	(autosubmit.platforms.locplatform.LocalPlatform method)

 	(autosubmit.platforms.sgeplatform.SgePlatform method)

 	
 	testcase() (autosubmit.autosubmit.Autosubmit static method)

 	total_processors (autosubmit.job.job.Job attribute)

 	Type (class in autosubmit.job.job_common)

U

 	
 	unarchive() (autosubmit.autosubmit.Autosubmit static method)

 	unify_conf() (autosubmit.config.config_common.AutosubmitConfig method)

 	update_cmds() (autosubmit.platforms.ecplatform.EcPlatform method)

 	(autosubmit.platforms.locplatform.LocalPlatform method)

 	(autosubmit.platforms.lsfplatform.LsfPlatform method)

 	(autosubmit.platforms.pbsplatform.PBSPlatform method)

 	(autosubmit.platforms.sgeplatform.SgePlatform method)

 	(autosubmit.platforms.slurmplatform.SlurmPlatform method)

 	
 	update_content() (autosubmit.job.job.Job method)

 	update_experiment_descrip_version() (in module autosubmit.database.db_common)

 	update_from_file() (autosubmit.job.job_list.JobList method)

 	update_genealogy() (autosubmit.job.job_list.JobList method)

 	update_list() (autosubmit.job.job_list.JobList method)

 	update_parameters() (autosubmit.job.job.Job method)

 	update_status() (autosubmit.job.job.Job method)

 	update_version() (autosubmit.autosubmit.Autosubmit static method)

W

 	
 	WrapperJob (class in autosubmit.job.job)

 	write_end_time() (autosubmit.job.job.Job method)

 	
 	write_start_time() (autosubmit.job.job.Job method)

 	write_submit_time() (autosubmit.job.job.Job method)

 	write_total_stat_by_retries() (autosubmit.job.job.Job method)

How to set a custom interpreter for your job

If the remote platform does not implement the interpreter you need, you can customize the shebang of your job script so it points to the relative path of the interpreter you want.

In the file:

vi <experiments_directory>/cxxx/conf/jobs_cxxx.conf

Example job with all options specified

Job name
[JOBNAME]
Script to execute. If not specified, job will be omitted from workflow.
Path relative to the project directory
FILE =
Platform to execute the job. If not specified, defaults to HPCARCH in expedf file.
LOCAL is always defined and refers to current machine
PLATFORM =
Queue to add the job to. If not specified, uses PLATFORM default.
QUEUE =
Defines dependencies from job as a list of parents jobs separated by spaces.
Dependencies to jobs in previous chunk, member o startdate, use -(DISTANCE)
DEPENDENCIES = INI SIM-1 CLEAN-2
Define if jobs runs once, once per stardate, once per member or once per chunk. Options: once, date, member, chunk.
If not specified, defaults to once
RUNNING = once
Specifies that job has only to be run after X dates, members or chunk. A job will always be created for the last
If not specified, defaults to 1
FREQUENCY = 3
On a job with FREQUENCY > 1, if True, the dependencies are evaluated against all
jobs in the frequency interval, otherwise only evaluate dependencies against current
iteration.
If not specified, defaults to True
WAIT = False
Defines if job is only to be executed in reruns. If not specified, defaults to false.
RERUN_ONLY = False
Wallclock to be submitted to the HPC queue in format HH:MM
WALLCLOCK = 00:05
Processors number to be submitted to the HPC. If not specified, defaults to 1.
Wallclock chunk increase (WALLCLOCK will be increased according to the formula WALLCLOCK + WCHUNKINC * (chunk - 1)).
Ideal for sequences of jobs that change their expected running time according to the current chunk.
WCHUNKINC = 00:01
PROCESSORS = 1
Threads number to be submitted to the HPC. If not specified, defaults to 1.
THREADS = 1
Tasks number to be submitted to the HPC. If not specified, defaults to 1.
Tasks = 1
Enables hyper-threading. If not specified, defaults to false.
HYPERTHREADING = false
Memory requirements for the job in MB
MEMORY = 4096
Number of retrials if a job fails. If not specified, defaults to the value given on experiment's autosubmit.conf
RETRIALS = 4
Allows to put a delay between retries, of retrials if a job fails. If not specified, it will be static
The ideal is to use the +(number) approach or plain(number) in case that the hpc platform has little issues or the experiment will run for a short period of time
And *(10) in case that the filesystem is having large delays or the experiment will run for a lot of time.
DELAY_RETRY_TIME = 11
DELAY_RETRY_TIME = +11 # will wait 11 + number specified
DELAY_RETRY_TIME = *11 # will wait 11,110,1110,11110...* by 10 to prevent a too big number
Some jobs can not be checked before running previous jobs. Set this option to false if that is the case
CHECK = False
Select the interpreter that will run the job. Options: bash, python, r Default: bash
TYPE = bash
Specify the path to the interpreter. If empty, use system default based on job type . Default: empty
EXECUTABLE = /my_python_env/python3

You can give a path to the EXECUTABLE setting of your job. Autosubmit will replace the shebang with the path you provided.

Example:

[POST]
FILE = POST.sh
DEPENDENCIES = SIM
RUNNING = chunk
WALLCLOCK = 00:05
EXECUTABLE = /my_python_env/python3

This job will use the python interpreter located in the relative path /my_python_env/python3/

It is also possible to use variables in the EXECUTABLE path.

Example:

[POST]
FILE = POST.sh
DEPENDENCIES = SIM
RUNNING = chunk
WALLCLOCK = 00:05
EXECUTABLE = %PROJDIR%/my_python_env/python3

The result is a shebang line #!/esarchive/autosubmit/my_python_env/python3.

How to use advanced features

	How to migrate an experiment

	How to set a custom interpreter for your job

How to migrate an experiment

To migrate an experiment from one user to another, you need to add two parameters for each platform in the platforms configuration file:

	USER_TO = <target_user> # Mandatory

	TEMP_DIR = <hpc_temporary_directory> # Mandatory, can be left empty if there are no files on that platform

	SAME_USER = false|true # Default False

	PROJECT_TO = <project> # Optional, if not specified project will remain the same

	HOST_TO = <cluster_ip> # Optional, avoid alias if possible, try use direct ip.

Warning

The USER_TO must be a different user , in case you want to maintain the same user, put SAME_USER = True.

Warning

The temporary directory must be readable by both users (old owner and new owner)
Example for a RES account to BSC account the tmp folder must have rwx|rwx|— permissions.
The temporary directory must be in the same filesystem.

User A, To offer the experiment:

autosubmit migrate --offer expid

Local files will be archived and remote files put in the HPC temporary directory.

User A To only offer the remote files

autosubmit migrate expid --offer --onlyremote

Only remote files will be put in the HPC temporary directory.

Warning

Be sure that there is no folder named as the expid before do the pick.
The old owner might need to remove temporal files and archive.
To Run the experiment the queue may need to be change.

Warning

If onlyremote option is selected, the pickup must maintain the flag otherwise the command will fail.

Now to pick the experiment, the user B, must do

autosubmit migrate --pickup expid

Local files will be unarchived and remote files copied from the temporal location.

To only pick the remote files, the user B, must do

autosubmit migrate --pickup expid --onlyremote

How to archive an experiment

To archive the experiment, use the command:

autosubmit archive EXPID

EXPID is the experiment identifier.

Warning

this command calls implicitly the clean command. Check clean command documentation.

Warning

experiment will be unusable after archiving. If you want to use it, you will need to call first the
unarchive command

Options:

usage: autosubmit archive [-h] expid

 expid experiment identifier

 -h, --help show this help message and exit

Example:

autosubmit archive cxxx

Hint

Archived experiment will be stored as a tar.gz file on a folder named after the year of the last
COMPLETED file date. If not COMPLETED file is present, it will be stored in the folder matching the
date at the time the archive command was run.

How to clean the experiment

This procedure allows you to save space after finalising an experiment.
You must execute:

autosubmit clean EXPID

Options:

usage: autosubmit clean [-h] [-pr] [-p] [-s] expid

 expid experiment identifier

 -h, --help show this help message and exit
 -pr, --project clean project
 -p, --plot clean plot, only 2 last will remain
 -s, --stats clean stats, only last will remain

	The -p and -s flag are used to clean our experiment plot folder to save disk space. Only the two latest plots will be kept. Older plots will be removed.

Example:

autosubmit clean cxxx -p

	The -pr flag is used to clean our experiment proj locally in order to save space (it could be particularly big).

Caution

Bear in mind that if you have not synchronized your experiment project folder with the information available on the remote repository (i.e.: commit and push any changes we may have), or in case new files are found, the clean procedure will be failing although you specify the -pr option.

Example:

autosubmit clean cxxx -pr

A bare copy (which occupies less space on disk) will be automatically made.

Hint

That bare clone can be always reconverted in a working clone if we want to run again the experiment by using git clone bare_clone original_clone.

Note

In addition, every time you run this command with -pr option, it will check the commit unique identifier for local working tree existing on the proj directory.
In case that commit identifier exists, clean will register it to the expdef_cxxx.conf file.

How to delete the experiment

To delete the experiment, use the command:

autosubmit delete EXPID

EXPID is the experiment identifier.

Warning

DO NOT USE THIS COMMAND IF YOU ARE NOT SURE !
It deletes the experiment from database and experiment’s folder.

Options:

usage: autosubmit delete [-h] [-f] expid

 expid experiment identifier

 -h, --help show this help message and exit
 -f, --force deletes experiment without confirmation

Example:

autosubmit delete cxxx

Warning

Be careful ! force option does not ask for your confirmation.

How to archive and clean an experiment

	How to clean the experiment

	How to delete the experiment

	How to archive an experiment

	How to unarchive an experiment

How to unarchive an experiment

To unarchive an experiment, use the command:

autosubmit unarchive EXPID

EXPID is the experiment identifier.

Options:

usage: autosubmit unarchive [-h] expid

 expid experiment identifier

 -h, --help show this help message and exit

Example:

autosubmit unarchive cxxx

How to check the experiment configuration

To check the configuration of the experiment, use the command:

autosubmit check EXPID

EXPID is the experiment identifier.

It checks experiment configuration and warns about any detected error or inconsistency.
It is used to check if the script is well-formed.
If any template has an inconsistency it will replace them for an empty value on the cmd generated.
Options:

usage: autosubmit check [-h -nt] expid

 expid experiment identifier
 -nt --notransitive
 prevents doing the transitive reduction when plotting the workflow
 -h, --help show this help message and exit

Example:

autosubmit check cxxx

How to use check in running time:

In jobs_cxxx.conf , you can set check(default true) to check the scripts during autosubmit run cxx.

There are two parameters related to check:

	CHECK: Controls the mechanism that allows replacing an unused variable with an empty string (%_% substitution). It is TRUE by default.

	SHOW_CHECK_WARNINGS: For debugging purposes. It will print a lot of information regarding variables and substitution if it is set to TRUE.

CHECK = TRUE or FALSE or ON_SUBMISSION # Default is TRUE
SHOW_CHECK_WARNINGS = TRUE or FALSE # Default is FALSE

CHECK = TRUE # Static templates (existing on `autosubmit create`). Used to substitute empty variables

CHECK = ON_SUBMISSION # Dynamic templates (generated on running time). Used to substitute empty variables.

CHECK = FALSE # Used to disable this substitution.

SHOW_CHECK_WARNINGS = TRUE # Shows a LOT of information. Disabled by default.

For example:

[LOCAL_SETUP]
FILE = filepath_that_exists
PLATFORM = LOCAL
WALLCLOCK = 05:00
CHECK = TRUE
SHOW_CHECK_WARNINGS = TRUE
...
[SIM]
FILE = filepath_that_no_exists_until_setup_is_processed
PLATFORM = bsc_es
DEPENDENCIES = LOCAL_SETUP SIM - 1
RUNNING = chunk
WALLCLOCK = 05:00
CHECK = ON_SUBMISSION
SHOW_CHECK_WARNINGS = FALSE
...

How to change the communications library

In order to handle the remote communications with the different platforms, Autosubmit uses an implementation
of a communications library. There are multiple implementations, so you can choose any of them.

Hint

At this moment there are one available communication library which is paramiko.

To change the communications library, open the <experiments_directory>/cxxx/conf/autosubmit_cxxx.conf file
where cxxx is the experiment identifier and change the value of the API configuration variable in the communications
section:

[communications]
Communications library used to connect with platforms: paramiko.
Default = paramiko
API = paramiko

How to configure email notifications

To configure the email notifications, you have to follow two configuration steps:

	First you have to enable email notifications and set the accounts where you will receive it.

Edit autosubmit_cxxx.conf in the conf folder of the experiment.

Hint

Remember that you can define more than one email address divided by a whitespace.

Example:

vi <experiments_directory>/cxxx/conf/autosubmit_cxxx.conf

[mail]
Enable mail notifications for remote_failures
Default = True
NOTIFY_ON_REMOTE_FAIL = True
Enable mail notifications
Default = False
NOTIFICATIONS = True
Mail address where notifications will be received
TO = jsmith@example.com rlewis@example.com

	Then you have to define for which jobs you want to be notified.

Edit jobs_cxxx.conf in the conf folder of the experiment.

Hint

You will be notified every time the job changes its status to one of the statuses
defined on the parameter NOTIFY_ON

Hint

Remember that you can define more than one job status divided by a whitespace.

Example:

vi <experiments_directory>/cxxx/conf/jobs_cxxx.conf

[LOCAL_SETUP]
FILE = LOCAL_SETUP.sh
PLATFORM = LOCAL
NOTIFY_ON = FAILED COMPLETED

How to request exclusivity or reservation

To request exclusivity or reservation for your jobs, you can configure two platform variables:

Edit platforms_cxxx.conf in the conf folder of the experiment.

Hint

Until now, it is only available for Marenostrum.

Hint

To define some jobs with exclusivity/reservation and some others without it, you can define
twice a platform, one with this parameters and another one without it.

Example:

vi <experiments_directory>/cxxx/conf/platforms_cxxx.conf

[marenostrum3]
TYPE = LSF
HOST = mn-bsc32
PROJECT = bsc32
ADD_PROJECT_TO_HOST = false
USER = bsc32XXX
SCRATCH_DIR = /gpfs/scratch
TEST_SUITE = True
EXCLUSIVITY = True

Of course, you can configure only one or both. For example, for reservation it would be:

Example:

vi <experiments_directory>/cxxx/conf/platforms_cxxx.conf

[marenostrum3]
TYPE = LSF
...
RESERVATION = your-reservation-id

How to create and run only selected members

Your experiment is defined and correctly configured, but you want to create it only considering some selected members, and also to avoid creating the whole experiment to run only the members you want. Then, you can do it by configuring the setting RUN_ONLY_MEMBERS in the file:

vi <experiments_directory>/cxxx/conf/expdef_cxxx.conf

[DEFAULT]
Experiment identifier
No need to change
EXPID = cxxx
HPC name.
No need to change
HPCARCH = ithaca

[experiment]
Supply the list of start dates. Available formats: YYYYMMDD YYYYMMDDhh YYYYMMDDhhmm
Also you can use an abbreviated syntax for multiple dates with common parts:
200001[01 15] <=> 20000101 20000115
DATELIST = 19600101 19650101 19700101
DATELIST = 1960[0101 0201 0301]
DATELIST = 19900101
Supply the list of members. LIST = fc0 fc1 fc2 fc3 fc4
MEMBERS = fc0
Chunk size unit. STRING = hour, day, month, year
CHUNKSIZEUNIT = month
Chunk size. NUMERIC = 4, 6, 12
CHUNKSIZE = 1
Total number of chunks in experiment. NUMERIC = 30, 15, 10
NUMCHUNKS = 2
Calendar used. LIST: standard, noleap
CALENDAR = standard
List of members that can be included in this run. Optional.
RUN_ONLY_MEMBERS = fc0 fc1 fc2 fc3 fc4
RUN_ONLY_MEMBERS = fc[0-4]
RUN_ONLY_MEMBERS =

You can set the RUN_ONLY_MEMBERS value as shown in the format examples above it. Then, Job List generation is performed as usual. However, an extra step is performed that will filter the jobs according to RUN_ONLY_MEMBERS. It discards jobs belonging to members not considered in the value provided, and also we discard these jobs from the dependency tree (parents and children). The filtered Job List is returned.

The necessary changes have been implemented in the API so you can correctly visualize experiments implementing this new setting in Autosubmit GUI.

Important

Wrappers are correctly formed considering the resulting jobs.

How to configure your experiment

	How to configure email notifications

	How to request exclusivity or reservation

	How to add a new job

	Workflow examples:
	Example 1:

	Example 2: select_chunks

	Example 3: SKIPPABLE

	Example 4: Weak dependencies

	Example 5: Select Member

	How to add a new platform

	How to change the communications library

	How to refresh the experiment project

	How to create and run only selected members

	How to check the experiment configuration

	How to use check in running time:

	How to update the description of your experiment

How to add a new job

To add a new job, open the <experiments_directory>/cxxx/conf/jobs_cxxx.conf file where cxxx is the experiment
identifier and add this text:s

[new_job]
FILE = <new_job_template>

This will create a new job named “new_job” that will be executed once at the default platform. This job will user the
template located at <new_job_template> (path is relative to project folder).

This is the minimum job definition and usually is not enough. You usually will need to add some others parameters:

	PLATFORM: allows you to execute the job in a platform of your choice. It must be defined in the experiment’s
platforms.conf file or to have the value ‘LOCAL’ that always refer to the machine running Autosubmit

	RUNNING: defines if jobs runs only once or once per start-date, member or chunk. Options are: once, date,
member, chunk

	DEPENDENCIES: defines dependencies from job as a list of parents jobs separated by spaces. For example, if
‘new_job’ has to wait for “old_job” to finish, you must add the line “DEPENDENCIES = old_job”.

	For dependencies to jobs running in previous chunks, members or start-dates, use -(DISTANCE). For example, for a job “SIM” waiting for

	the previous “SIM” job to finish, you have to add “DEPENDENCIES = SIM-1”.

	
	For dependencies that are not mandatory for the normal workflow behaviour, you must add the char ‘?’ at the end of the dependency.

	SELECT_CHUNKS (optional): by default, all sections depend on all jobs the items specified on the DEPENDENCIES parameter. However, with this parameter, you could select the chunks of a specific job section. At the end of this doc, you will find diverse examples of this feature. The syntax is as follows:

[jobs]

SELECT_CHUNKS = SIM*[1:3] # Enables the dependency of chunk 1,2 and 3. While 4 won't be linked.
SELECT_CHUNKS = SIM*[1,3] # Enables the dependency of chunk 1 and 3. While 2 and 4 won't be linked
SELECT_CHUNKS = SIM*[1] # Enables the dependency of chunk 1. While 2, 3 and 4 won't be linked
SELECT_CHUNKS = SIM*[1]*[3] # Enables the dependency of SIM_1 with CHILD_3. While chunks 2,4 won't be linked.
SELECT_CHUNKS = SIM*[2:4]*[2:4] SIM*[2]*[1] # Links SIM_2:4 with CHILDREN_2:4 and links SIM_2 with CHILD_1

	SELECT_MEMBERS (optional): by default, all sections depend on all jobs the items specified on the DEPENDENCIES parameter. However, with this parameter, you could select the members of a specific job section. At the end of this doc, you will find diverse examples of this feature. Caution, you must pick the member index, not the member name.

[expdef.conf]
...
MEMBERS = AA BB CC DD
...
[jobs.conf]
SELECT_MEMBERS = SIM*[1]*[3] # Enables the dependency of member BB with member DD. While AA and CC won't be linked.
SELECT_MEMBERS = SIM*[1:3] # Enables the dependency of member BB,CC and DD. While AA won't be linked.
SELECT_MEMBERS = SIM*[1,3] # Enables the dependency of member BB and DD. While AA and CC won't be linked
SELECT_MEMBERS = SIM*[1] # Enables the dependency of member BB. While AA, CC and DD won't be linked

	EXCLUDED_CHUNKS (optional): With this parameter, you can prevent the generation of jobs for a list of chunks.

	EXCLUDED_MEMBERS (optional): With this parameter, you can prevent the generation of jobs for a list of members.

For jobs running in HPC platforms, usually you have to provide information about processors, wallclock times and more.
To do this use:

	WALLCLOCK: wallclock time to be submitted to the HPC queue in format HH:MM

	PROCESSORS: processors number to be submitted to the HPC. If not specified, defaults to 1.

	THREADS: threads number to be submitted to the HPC. If not specified, defaults to 1.

	TASKS: tasks number to be submitted to the HPC. If not specified, defaults to 1.

	HYPERTHREADING: Enables Hyper-threading, this will double the max amount of threads. defaults to false. (Not available on slurm platforms)

	QUEUE: queue to add the job to. If not specified, uses PLATFORM default.

	RETRIALS: Number of retrials if job fails

	DELAY_RETRY_TIME: Allows to put a delay between retries. Triggered when a job fails. If not specified, Autosubmit will retry the job as soon as possible. Accepted formats are: plain number (there will be a constant delay between retrials, of as many seconds as specified), plus (+) sign followed by a number (the delay will steadily increase by the addition of these number of seconds), or multiplication (*) sign follows by a number (the delay after n retries will be the number multiplied by 10*n). Having this in mind, the ideal scenario is to use +(number) or plain(number) in case that the HPC has little issues or the experiment will run for a little time. Otherwise, is better to use the *(number) approach.

#DELAY_RETRY_TIME = 11
#DELAY_RETRY_TIME = +11 # will wait 11 + number specified
#DELAY_RETRY_TIME = *11 # will wait 11,110,1110,11110...* by 10 to prevent a too big number

There are also other, less used features that you can use:

	FREQUENCY: specifies that a job has only to be run after X dates, members or chunk. A job will always be created for
the last one. If not specified, defaults to 1

	SYNCHRONIZE: specifies that a job with RUNNING=chunk, has to synchronize its dependencies chunks at a ‘date’ or
‘member’ level, which means that the jobs will be unified: one per chunk for all members or dates.
If not specified, the synchronization is for each chunk of all the experiment.

	RERUN_ONLY: determines if a job is only to be executed in reruns. If not specified, defaults to false.

	CUSTOM_DIRECTIVES: Custom directives for the HPC resource manager headers of the platform used for that job.

	SKIPPABLE: When this is true, the job will be able to skip it work if there is an higher chunk or member already ready, running, queuing or in complete status.

	EXPORT: Allows to run an env script or load some modules before running this job.

	EXECUTABLE: Allows to wrap a job for be launched with a set of env variables.

	QUEUE: queue to add the job to. If not specified, uses PLATFORM default.

Workflow examples:

Example 1:

In this first example, you can see 3 jobs in which last job (POST) shows an example with select chunks:

[INI]
FILE = templates/common/ini.tmpl.sh
RUNNING = member
WALLCLOCK = 00:30
QUEUE = debug
CHECK = true

[SIM]
FILE = templates/ecearth3/ecearth3.sim
DEPENDENCIES = INI
RUNNING = chunk
WALLCLOCK = 04:00
PROCESSORS = 1616
THREADS = 1

[POST]
FILE = templates/common/post.tmpl.sh
DEPENDENCIES = SIM
RUNNING = chunk
WALLCLOCK = 01:00
QUEUE = Debug
check = true
Then you can select the specific chunks of dependency SIM with one of those lines:

SELECT_CHUNKS = SIM*[1]*[3] # Will do the dependency of chunk 1 and chunk 3. While chunks 2,4 won't be linked.
SELECT_CHUNKS = SIM*[1:3] #Enables the dependency of chunk 1,2 and 3. While 4 won't be linked.
SELECT_CHUNKS = SIM*[1,3] #Enables the dependency of chunk 1 and 3. While 2 and 4 won't be linked
SELECT_CHUNKS = SIM*[1] #Enables the dependency of chunk 1. While 2, 3 and 4 won't be linked

Example 2: select_chunks

In this workflow you can see an illustrated example of select_chunks used in an actual workflow, to avoid an excess of information we only will see the configuration of a single job:

[SIM]
FILE = templates/sim.tmpl.sh
DEPENDENCIES = INI SIM-1 POST-1 CLEAN-5
SELECT_CHUNKS = POST*[1]
RUNNING = chunk
WALLCLOCK = 0:30
PROCESSORS = 768

[image: select_chunks_workflow]

Example 3: SKIPPABLE

In this workflow you can see an illustrated example of SKIPPABLE parameter used in an dummy workflow.

[SIM]
FILE = sim.sh
DEPENDENCIES = INI POST-1
WALLCLOCK = 00:15
RUNNING = chunk
QUEUE = debug
SKIPPABLE = TRUE

[POST]
FILE = post.sh
DEPENDENCIES = SIM
WALLCLOCK = 00:05
RUNNING = member
#QUEUE = debug

[image: skip_workflow]

Example 4: Weak dependencies

In this workflow you can see an illustrated example of weak dependencies.

Weak dependencies, work like this way:

	X job only has one parent. X job parent can have “COMPLETED or FAILED” as status for current job to run.

	X job has more than one parent. One of the X job parent must have “COMPLETED” as status while the rest can be “FAILED or COMPLETED”.

[GET_FILES]
FILE = templates/fail.sh
RUNNING = chunk

[IT]
FILE = templates/work.sh
RUNNING = chunk
QUEUE = debug

[CALC_STATS]
FILE = templates/work.sh
DEPENDENCIES = IT GET_FILES?
RUNNING = chunk
SYNCHRONIZE = member

[image: dashed_workflow]

Example 5: Select Member

In this workflow you can see an illustrated example of select member. Using 4 members 1 datelist and 4 different job sections.

Expdef:

[experiment]
DATELIST = 19600101
MEMBERS = 00 01 02 03
CHUNKSIZE = 1
NUMCHUNKS = 2

Jobs_conf:

[SIM]
...
RUNNING = chunk
QUEUE = debug

[DA]
...
DEPENDENCIES = SIM
SELECT_MEMBERS = SIM*[0:2]
RUNNING = chunk
SYNCHRONIZE = member

[REDUCE]
...
DEPENDENCIES = SIM
SELECT_MEMBERS = SIM*[3]
RUNNING = member
FREQUENCY = 4

[REDUCE_AN]
...
FILE = templates/05b_sim.sh
DEPENDENCIES = DA
RUNNING = chunk
SYNCHRONIZE = member

[image: select_members]

How to add a new platform

Hint

If you are interested in changing the communications library, go to the section below.

To add a new platform, open the <experiments_directory>/cxxx/conf/platforms_cxxx.conf file where cxxx is the experiment
identifier and add this text:

[new_platform]
TYPE = <platform_type>
HOST = <host_name>
PROJECT = <project>
USER = <user>
SCRATCH = <scratch_dir>

This will create a platform named “new_platform”. The options specified are all mandatory:

	TYPE: queue type for the platform. Options supported are PBS, SGE, PS, LSF, ecaccess and SLURM.

	HOST: hostname of the platform

	PROJECT: project for the machine scheduler

	USER: user for the machine scheduler

	SCRATCH_DIR: path to the scratch directory of the machine

	VERSION: determines de version of the platform type

Warning

With some platform types, Autosubmit may also need the version, forcing you to add the parameter
VERSION. These platforms are PBS (options: 10, 11, 12) and ecaccess (options: pbs, loadleveler).

Some platforms may require to run serial jobs in a different queue or platform. To avoid changing the job
configuration, you can specify what platform or queue to use to run serial jobs assigned to this platform:

	SERIAL_PLATFORM: if specified, Autosubmit will run jobs with only one processor in the specified platform.

	SERIAL_QUEUE: if specified, Autosubmit will run jobs with only one processor in the specified queue. Autosubmit
will ignore this configuration if SERIAL_PLATFORM is provided

There are some other parameters that you may need to specify:

	BUDGET: budget account for the machine scheduler. If omitted, takes the value defined in PROJECT

	ADD_PROJECT_TO_HOST = option to add project name to host. This is required for some HPCs

	QUEUE: if given, Autosubmit will add jobs to the given queue instead of platform’s default queue

	TEST_SUITE: if true, autosubmit test command can use this queue as a main queue. Defaults to false

	MAX_WAITING_JOBS: maximum number of jobs to be waiting in this platform.

	TOTAL_JOBS: maximum number of jobs to be running at the same time in this platform.

	CUSTOM_DIRECTIVES: Custom directives for the resource manager of this platform.

Example:

[platform]
TYPE = SGE
HOST = hostname
PROJECT = my_project
ADD_PROJECT_TO_HOST = true
USER = my_user
SCRATCH_DIR = /scratch
TEST_SUITE = True
CUSTOM_DIRECTIVES = ["my_directive"]

How to refresh the experiment project

To refresh the project directory of the experiment, use the command:

autosubmit refresh EXPID

EXPID is the experiment identifier.

It checks experiment configuration and copy code from original repository to project directory.

Warning

DO NOT USE THIS COMMAND IF YOU ARE NOT SURE !
Project directory (<expid>/proj will be overwritten and you may loose local changes.

Options:

usage: autosubmit refresh [-h] expid

 expid experiment identifier

 -h, --help show this help message and exit
 -mc, --model_conf overwrite model conf file
 -jc, --jobs_conf overwrite jobs conf file

Example:

autosubmit refresh cxxx

How to update the description of your experiment

Use the command:

autosubmit updatedescrip EXPID DESCRIPTION

EXPID is the experiment identifier.

DESCRIPTION is the new description of your experiment.

Autosubmit will validate the provided data and print the results in the command line.

Example:

autosubmit a29z "Updated using Autosubmit updatedescrip"

How to create an experiment

To create a new experiment, just run the command:

autosubmit expid -H HPCname -d Description

HPCname is the name of the main HPC platform for the experiment: it will be the default platform for the tasks.
Description is a brief experiment description.

Options:

usage: autosubmit expid [-h] [-y COPY | -dm] [-p PATH] -H HPC -d DESCRIPTION

 -h, --help show this help message and exit
 -y COPY, --copy COPY makes a copy of the specified experiment
 -dm, --dummy creates a new experiment with default values, usually for testing
 -H HPC, --HPC HPC specifies the HPC to use for the experiment
 -d DESCRIPTION, --description DESCRIPTION
 sets a description for the experiment to store in the database.
 -c PATH, --config PATH
 if specified, copies config files from a folder

Example:

autosubmit expid --HPC ithaca --description "experiment is about..."

If there is an autosubmitrc or .autosubmitrc file in your home directory (cd ~), you can setup a default file from where the contents of platforms_expid.conf should be copied.

In this autosubmitrc or .autosubmitrc file, include the configuration setting custom_platforms:

Example:

[conf]
custom_platforms=/home/Earth/user/custom.conf

Where the specified path should be complete, as something you would get when executing pwd, and also include the filename of your custom platforms content.

How to create a copy of an experiment

This option makes a copy of an existing experiment.
It registers a new unique identifier and copies all configuration files in the new experiment folder:

autosubmit expid -y COPY -H HPCname -d Description
autosubmit expid -y COPY -c PATH -H HPCname -d Description

HPCname is the name of the main HPC platform for the experiment: it will be the default platform for the tasks.
COPY is the experiment identifier to copy from.
Description is a brief experiment description.
CONFIG is a folder that exists.
Example:

autosubmit expid -y cxxx -H ithaca -d "experiment is about..."
autosubmit expid -y cxxx -p "/esarchive/autosubmit/genericFiles/conf" -H marenostrum4 -d "experiment is about..."

Warning

You can only copy experiments created with Autosubmit 3.0 or above.

If there is an autosubmitrc or .autosubmitrc file in your home directory (cd ~), you can setup a default file from where the contents of platforms_expid.conf should be copied.

In this autosubmitrc or .autosubmitrc file, include the configuration setting custom_platforms:

Example:

[conf]
custom_platforms=/home/Earth/user/custom.conf

Where the specified path should be complete, as something you would get when executing pwd, and also include the filename of your custom platforms content.

How to create a dummy experiment

This command creates a new experiment with default values, useful for testing:

autosubmit expid -H HPCname -dm -d Description

HPCname is the name of the main HPC platform for the experiment: it will be the default platform for the tasks.
Description is a brief experiment description.

Example:

autosubmit expid -H ithaca -dm "experiment is about..."

How to configure the experiment

Edit expdef_cxxx.conf, jobs_cxxx.conf and platforms_cxxx.conf in the conf folder of the experiment.

	expdef_cxxx.conf contains:

	
	Start dates, members and chunks (number and length).

	Experiment project source: origin (version control system or path)

	Project configuration file path.

	jobs_cxxx.conf contains the workflow to be run:

	
	Scripts to execute.

	Dependencies between tasks.

	Task requirements (processors, wallclock time…).

	Platform to use.

	platforms_cxxx.conf contains:

	
	HPC, fat-nodes and supporting computers configuration.

Note

platforms_cxxx.conf is usually provided by technicians, users will only have to change login and accounting options for HPCs.

You may want to configure Autosubmit parameters for the experiment. Just edit autosubmit_cxxx.conf.

	autosubmit_cxxx.conf contains:

	
	Maximum number of jobs to be running at the same time at the HPC.

	Time (seconds) between connections to the HPC queue scheduler to poll already submitted jobs status.

	Number of retrials if a job fails.

Then, Autosubmit create command uses the expdef_cxxx.conf and generates the experiment:
After editing the files you can proceed to the experiment workflow creation.
Experiment workflow, which contains all the jobs and its dependencies, will be saved as a pkl file:

autosubmit create EXPID

EXPID is the experiment identifier.

Options:

usage: autosubmit create [-group_by {date,member,chunk,split} -expand -expand_status] [-h] [-np] [-cw] expid

 expid experiment identifier

 -h, --help show this help message and exit
 -np, --noplot omit plot creation
 --hide, hide the plot
 -group_by {date,member,chunk,split,automatic}
 criteria to use for grouping jobs
 -expand, list of dates/members/chunks to expand
 -expand_status, status(es) to expand
 -nt --notransitive
 prevents doing the transitive reduction when plotting the workflow
 -cw --check_wrapper
 Generate the wrapper in the current workflow
 -d --detail
 Shows Job List view in terminal

Example:

autosubmit create cxxx

In order to understand more the grouping options, which are used for visualization purposes, please check Grouping jobs.

More info on pickle can be found at http://docs.python.org/library/pickle.html

How to create your experiment

	How to create an experiment

	How to create a copy of an experiment

	How to create a dummy experiment

	How to configure the experiment

	How to test the experiment

	How to create a test case experiment

How to test the experiment

This method is to conduct a test for a given experiment. It creates a new experiment for a given experiment with a
given number of chunks with a random start date and a random member to be run on a random HPC.

To test the experiment, use the command:

autosubmit test CHUNKS EXPID

EXPID is the experiment identifier.
CHUNKS is the number of chunks to run in the test.

Options:

usage: autosubmit test [-h] -c CHUNKS [-m MEMBER] [-s STARDATE] [-H HPC] [-b BRANCH] expid

 expid experiment identifier

 -h, --help show this help message and exit
 -c CHUNKS, --chunks CHUNKS
 chunks to run
 -m MEMBER, --member MEMBER
 member to run
 -s STARDATE, --stardate STARDATE
 stardate to run
 -H HPC, --HPC HPC HPC to run experiment on it
 -b BRANCH, --branch BRANCH
 branch from git to run (or revision from subversion)

Example:

autosubmit test -c 1 -s 19801101 -m fc0 -H ithaca -b develop cxxx

How to create a test case experiment

This method is to create a test case experiment. It creates a new experiment for a test case with a
given number of chunks, start date, member and HPC.

To create a test case experiment, use the command:

autosubmit testcase

Options:

usage: autosubmit testcase [-h] [-y COPY] -d DESCRIPTION [-c CHUNKS]
 [-m MEMBER] [-s STARDATE] [-H HPC] [-b BRANCH]

 expid experiment identifier

 -h, --help show this help message and exit
 -c CHUNKS, --chunks CHUNKS
 chunks to run
 -m MEMBER, --member MEMBER
 member to run
 -s STARDATE, --stardate STARDATE
 stardate to run
 -H HPC, --HPC HPC HPC to run experiment on it
 -b BRANCH, --branch BRANCH
 branch from git to run (or revision from subversion)

Example:

autosubmit testcase -d "TEST CASE cca-intel auto-ecearth3 layer 0: T511L91-ORCA025L75-LIM3 (cold restart) (a092-a09n)" -H cca-intel -b 3.2.0b_develop -y a09n

How to run your experiment

	How to run the experiment

	How to run an experiment that was created with another version

	How to run only selected members

	How to start an experiment at a given time

	How to start an experiment after another experiment is finished

	How to rerun a part of the experiment

	Wrappers
	How to configure
	Number of jobs in a package

	Wrapper check time

	Vertical wrapper

	Vertical with multiple sections

	Horizontal wrapper
	Horizontal wrapper

	Shared-memory Experiments

	Hybrid wrapper

	Horizontal-vertical

	Vertical-horizontal

	Multiple wrappers at once

	Summary

	Remote Dependencies - Presubmission feature
	How to configure

	How to prepare an experiment to run in two independent job_list. (Priority jobs, Two-step-run)
	Feature overview

	Example

Remote Dependencies - Presubmission feature

There is also the possibility of setting the option PRESUBMISSION to True in the config directive.

This allows more than one package containing simple or wrapped jobs to be submitted at the same time, even when the dependencies between jobs aren’t yet satisfied. This is only useful for cases when the job scheduler considers the time a job has been queuing to determine the job’s priority (and the scheduler understands the dependencies set between the submitted packages). New packages can be created as long as the total number of jobs are below than the number defined in the TOTALJOBS variable.

The jobs that are waiting in the remote platform, will be marked as HOLD.

How to configure

In autosubmit_cxxx.conf, regardless of the how your workflow is configured.

For example:

[config]
EXPID =
AUTOSUBMIT_VERSION = 3.13.0b
...
PRESUBMISSION = TRUE
MAXWAITINGJOBS = 100
TOTALJOBS = 100
...

How to rerun a part of the experiment

This procedure allows you to create automatically a new pickle with a list of jobs of the experiment to rerun.

Using the expdef_<expid>.conf the create command will generate the rerun if the variable RERUN is set to TRUE and a RERUN_JOBLIST is provided.

Additionally, you can have re-run only jobs that won’t be include in the default job_list. In order to do that, you have to set RERUN_ONLY in the jobs conf of the corresponding job.

autosubmit create cxxx

It will read the list of jobs specified in the RERUN_JOBLIST and will generate a new plot.

Example:

vi <experiments_directory>/cxxx/conf/expdef_cxxx.conf

...

[rerun]
RERUN = TRUE
RERUN_JOBLIST = RERUN_TEST_INI;SIM[19600101[C:3]],RERUN_TEST_INI_chunks[19600101[C:3]]
...

vi <experiments_directory>/cxxx/conf/jobs_cxxx.conf

[PREPROCVAR]
FILE = templates/04_preproc_var.sh
RUNNING = chunk
PROCESSORS = 8

[RERUN_TEST_INI_chunks]
FILE = templates/05b_sim.sh
RUNNING = chunk
RERUN_ONLY = true

[RERUN_TEST_INI]
FILE = templates/05b_sim.sh
RUNNING = once
RERUN_ONLY = true

[SIM]
DEPENDENCIES = RERUN_TEST_INI RERUN_TEST_INI_chunks PREPROCVAR SIM-1
RUNNING = chunk
PROCESSORS = 10

.. figure:: ../../workflows/rerun.png
 :name: rerun_result
 :align: center
 :alt: rerun_result

nohup autosubmit run cxxx &

How to run the experiment

Launch Autosubmit with the command:

autosubmit run EXPID

EXPID is the experiment identifier.

Options:

usage: autosubmit run [-h] expid

 expid experiment identifier
 -nt --notransitive
 prevents doing the transitive reduction when plotting the workflow
 -v --update_version
 update the experiment version to match the actual autosubmit version
 -st --start_time
 Sets the starting time for the experiment. Accepted format: 'yyyy-mm-dd HH:MM:SS' or 'HH:MM:SS' (defaults to current day).
 -sa --start_after
 Sets a experiment expid that will be tracked for completion. When this experiment is completed, the current instance of Autosubmit run will start.
 -rm --run_members
 Sets a list of members allowed to run. The list must have the format '### ###' where '###' represents the name of the member as set in the conf files.
 -h, --help show this help message and exit

Example:

autosubmit run cxxx

Important

If the autosubmit version is set on autosubmit.conf it must match the actual autosubmit version

Hint

It is recommended to launch it in background and with nohup (continue running although the user who launched the process logs out).

Example:

nohup autosubmit run cxxx &

Important

Before launching Autosubmit check password-less ssh is feasible (HPCName is the hostname):

Important

The host machine has to be able to access HPC’s/Clusters via password-less ssh. Make sure that the ssh key is in PEM format ssh-keygen -t rsa -b 4096 -C “email@email.com” -m PEM.

ssh HPCName

More info on password-less ssh can be found at: http://www.linuxproblem.org/art_9.html

Caution

After launching Autosubmit, one must be aware of login expiry limit and policy (if applicable for any HPC) and renew the login access accordingly (by using token/key etc) before expiry.

How to run an experiment that was created with another version

Important

First of all you have to stop your Autosubmit instance related with the experiment

Once you’ve already loaded / installed the Autosubmit version do you want:

autosubmit create EXPID
autosubmit recovery EXPID -s -all
autosubmit run EXPID -v
or
autosubmit updateversion EXPID
autosubmit run EXPID -v

EXPID is the experiment identifier.
The most common problem when you change your Autosubmit version is the apparition of several Python errors.
This is due to how Autosubmit saves internally the data, which can be incompatible between versions.
The steps above represent the process to re-create (1) these internal data structures and to recover (2) the previous status of your experiment.

How to run only selected members

To run only a subset of selected members you can execute the command:

autosubmit run EXPID -rm MEMBERS

EXPID is the experiment identifier, the experiment you want to run.

MEMBERS is the selected subset of members. Format “member1 member2 member2”, example: “fc0 fc1 fc2”.

Then, your experiment will start running jobs belonging to those members only. If the experiment was previously running and autosubmit was stopped when some jobs belonging to other members (not the ones from your input) where running, those jobs will be tracked and finished in the new exclusive run.

Furthermore, if you wish to run a sequence of only members execution; then, instead of running autosubmit run -rm “member_1” … autosubmit run -rm “member_n”, you can make a bash file with that sequence and run the bash file. Example:

#!/bin/bash
autosubmit run EXPID -rm MEMBER_1
autosubmit run EXPID -rm MEMBER_2
autosubmit run EXPID -rm MEMBER_3
...
autosubmit run EXPID -rm MEMBER_N

How to prepare an experiment to run in two independent job_list. (Priority jobs, Two-step-run)

Feature overview

This feature allows to run an experiment in two separated steps without the need of do anything manually.

To achieve this, you will have to use an special parameter called TWO_STEP_START in which you will put the list of the jobs that you want to run in an exclusive mode. These jobs will run until all of them finishes and once it finishes, the rest of the jobs will begun the execution.

It can be activated through TWO_STEP_START and it is set on expdef_a02n.conf, under the [experiment] section.

[experiment]
DATELIST = 20120101 20120201
MEMBERS = fc00[0-3]
CHUNKSIZEUNIT = day
CHUNKSIZE = 1
NUMCHUNKS = 10
CHUNKINI =
CALENDAR = standard
To run before the rest of experiment:
TWO_STEP_START = <job_names§ion,dates,member_or_chunk(M/C),chunk_or_member(C/M)>

In order to be easier to use, there are Three modes for use this feature: job_names and section,dates,member_or_chunk(M/C),chunk_or_member(C/M).

	By using job_names alone, you will need to put all jobs names one by one divided by the char , .

	By using section,dates,member_or_chunk(M/C),chunk_or_member(C/M). You will be able to select multiple jobs at once combining these filters.

	Use both options, job_names and section,dates,member_or_chunk(M/C),chunk_or_member(C/M). You will have to put & between the two modes.

There are 5 fields on TWO_STEP_START, all of them are optional but there are certain limitations:

	Job_name: [Independent] List of job names, separated by ‘,’ char. Optional, doesn’t depend on any field. Separated from the rest of fields by ‘&’ must be the first field if specified

	Section: [Independent] List of sections, separated by ‘,’ char. Optional, can be used alone. Separated from the rest of fields by ‘;’

	Dates: [Depends on section] List of dates, separated by ‘,’ char. Optional, but depends on Section field. Separated from the rest of fields by ‘;’

	member_or_chunk: [Depends on Dates(OR)] List of chunk or member, must start with C or M to indicate the filter type. Jobs are selected by [1,2,3..] or by a range [0-9] Optional, but depends on Dates field. Separated from the rest of fields by ‘;’

	chunk_or_member: [Depends on Dates(OR)] List of member or chunk, must start with M or C to indicate the filter type. Jobs are selected by [1,2,3..] or by a range [0-9] Optional, but depends on Dates field. Separated from the rest of fields by ‘;’

Example

Guess the expdef configuration as follow:

[experiment]
DATELIST = 20120101
MEMBERS = 00[0-1]
CHUNKSIZEUNIT = day
CHUNKSIZE = 1
NUMCHUNKS = 2
TWO_STEP_START = a02n_20120101_000_1_REDUCE&COMPILE_DA,SIM;20120101;c[1]

Given this job_list (jobs_conf has REMOTE_COMPILE(once),DA,SIM,REDUCE)

[‘a02n_REMOTE_COMPILE’, ‘a02n_20120101_000_1_SIM’, ‘a02n_20120101_000_2_SIM’, ‘a02n_20120101_001_1_SIM’, ‘a02n_20120101_001_2_SIM’, ‘a02n_COMPILE_DA’, ‘a02n_20120101_1_DA’, ‘a02n_20120101_2_DA’, ‘a02n_20120101_000_1_REDUCE’, ‘a02n_20120101_000_2_REDUCE’, ‘a02n_20120101_001_1_REDUCE’, ‘a02n_20120101_001_2_REDUCE’]

The priority jobs will be (check TWO_STEP_START from expdef conf):

[‘a02n_20120101_000_1_SIM’, ‘a02n_20120101_001_1_SIM’, ‘a02n_COMPILE_DA’, ‘a02n_20120101_000_1_REDUCE’]

Finally, you can launch Autosubmit run in background and with nohup (continue running although the user who launched the process logs out).

nohup autosubmit run cxxx &

How to start an experiment after another experiment is finished

To start an experiment after another experiment is finished, use the command:

autosubmit run EXPID -sa EXPIDB

EXPID is the experiment identifier, the experiment you want to start.

EXPIDB is the experiment identifier of the experiment you are waiting for before your experiment starts.

Warning

Both experiments must be using Autosubmit version 3.13.0b or later.

Then, your terminal will show the current status of the experiment you are waiting for. The status format is COMPLETED/QUEUING/RUNNING/SUSPENDED/FAILED.

This functionality can be used together with other options supplied by the run command.

The -sa command has a long version –start_after.

How to start an experiment at a given time

To start an experiment at a given time, use the command:

autosubmit run EXPID -st INPUT

EXPID is the experiment identifier

	INPUT is the time when your experiment will start. You can provide two formats:

	
	H:M:S: For example 15:30:00 will start your experiment at 15:30 in the afternoon of the present day.

	yyyy-mm-dd H:M:S: For example 2021-02-15 15:30:00 will start your experiment at 15:30 in the afternoon on February 15th.

Then, your terminal will show a countdown for your experiment start.

This functionality can be used together with other options supplied by the run command.

The -st command has a long version –start_time.

Wrappers

In order to understand the goal of this feature, please take a look at: https://earth.bsc.es/wiki/lib/exe/fetch.php?media=library:seminars:techniques_to_improve_the_throughput.pptx

At the moment there are 4 types of wrappers that can be used depending on the experiment’s workflow:

	Vertical

	Horizontal

	Hybrid (horizontal-vertical and vertical-horizontal approaches)

	Multiple wrappers - Same experiment

When using the wrapper, it is useful to be able to visualize which packages are being created.
So, when executing autosubmit monitor cxxx, a dashed box indicates the jobs that are wrapped together in the same job package.

How to configure

In autosubmit_cxxx.conf, regardless of the wrapper type, you need to make sure that the values of the variables MAXWAITINGJOBS and TOTALJOBS are increased according to the number of jobs expected to be waiting/running at the same time in your experiment.

For example:

[config]
EXPID =
AUTOSUBMIT_VERSION = 3.13.0
...

MAXWAITINGJOBS = 100
TOTALJOBS = 100
...

and below the [config] block, add the wrapper directive, indicating the wrapper type:

[wrapper]
TYPE =

You can also specify which job types should be wrapped. This can be done using the JOBS_IN_WRAPPER parameter.
It is only required for the vertical-mixed type (in which the specified job types will be wrapped together), so if nothing is specified, all jobs will be wrapped.
By default, jobs of the same type will be wrapped together, as long as the constraints are satisfied.

Number of jobs in a package

[wrapper]
TYPE = <ANY>
MIN_WRAPPED = 2
MAX_WRAPPED = 999
POLICY = flexible #default is flexible. Values: flexible,strict,mixed

	
	MAX_WRAPPED can be defined in jobs_cxxx.conf in order to limit the number of jobs wrapped for the corresponding job section

	
	
	If not defined, it considers the MAX_WRAPPED defined under [wrapper] in autosubmit_cxxx.conf

	
	If MAX_WRAPPED is not defined, then TOTALJOBS is used by default

	
	MIN_WRAPPED can be defined in autosubmit_cxxx.conf in order to limit the minimum number of jobs that a wrapper can contain

	
	If not defined, it considers that MIN_WRAPPED is 2.

	If POLICY is flexible and it is not possible to wrap MIN_WRAPPED or more tasks, these tasks will be submitted as individual jobs, as long as the condition is not satisfied.

	If POLICY is mixed and there are failed jobs inside a wrapper, these jobs will be submitted as individual jobs.

	If POLICY is strict and it is not possible to wrap MIN_WRAPPED or more tasks, these tasks will not be submitted until there are enough tasks to build a package.

	strict and mixed policies can cause deadlocks.

Wrapper check time

It is possible to override the SAFETYSLEEPTIME for the wrapper, by using CHECK_TIME_WRAPPER and defining a time interval (in seconds) in which the wrapper internal jobs should be checked.

Important

Note that the numbers shown in this documentation are examples. The actual values must be set according to the specific workflow, as well as the platform configurations.

Vertical wrapper

The vertical wrapper is more appropriate when there are many sequential jobs. To use it, set TYPE = vertical:

[wrapper]
TYPE = vertical

In order to be able to use the vertical wrapper, in platforms_cxxx.conf set the maximum wallclock allowed by the platform in use:

[marenostrum4]
...
MAX_WALLCLOCK = 72:00

Remember to add to each job the corresponding WALLCLOCK time.

Vertical with multiple sections

This is a mode of the vertical wrapper that allows jobs of different types to be wrapped together.
Note that the solution considers the order of the sections defined in the jobs_cxxx.conf file, so the order of the sections given in JOBS_IN_WRAPPER is irrelevant.
Additionally, jobs are grouped within the corresponding date, member and chunk hierarchy.

[wrapper]
TYPE = vertical
JOBS_IN_WRAPPER = SIM&SIM2 # REQUIRED

[image: vertical-mixed wrapper]

Horizontal wrapper

The horizontal wrapper is more appropriate when there are multiple ensemble members that can be run in parallel.

If the wrapped jobs have an mpirun call, they will need machine files to specify in which nodes each job will run.
Different cases may need specific approaches when creating the machine files. For auto-ecearth use COMPONENTS instead of STANDARD.

Horizontal wrapper

[wrapper]
TYPE = horizontal
JOBS_IN_WRAPPER = SIM

In order to be able to use the horizontal wrapper, in platforms_cxxx.conf set the maximum number of processors allowed by the platform in use:

[marenostrum4]
...
MAX_PROCESSORS = 2400

[image: horizontally wrapped jobs]

Shared-memory Experiments

There is also the possibility of setting the option METHOD to SRUN in the wrapper directive (ONLY for vertical and vertical-horizontal wrappers).

This allows to form a wrapper with shared-memory paradigm instead of rely in machinefiles to work in parallel.

[wrapper]
TYPE = vertical
METHOD = srun # default ASTHREAD

Hybrid wrapper

The hybrid wrapper is a wrapper that works both vertically and horizontally at the same time, meaning that members and chunks can be wrapped in one single job.
Mixed approach using a combination of horizontal and vertical wrappers and the list of jobs is a list of lists.

Horizontal-vertical

	There is a dependency between lists. Each list runs after the previous one finishes; the jobs within the list run in parallel at the same time

	It is particularly suitable if there are jobs of different types in the list with different wall clocks, but dependencies between jobs of different lists; it waits for all the jobs in the list to finish before starting the next list

[wrapper]
TYPE = horizontal-vertical
MACHINEFILES = STANDARD
JOBS_IN_WRAPPER = SIM&DA

[image: hybrid wrapper]

Vertical-horizontal

	In this approach, each list is independent of each other and run in parallel; jobs within the list run one after the other

	It is particularly suitable for running many sequential ensembles

[wrapper]
TYPE = vertical-horizontal
MACHINEFILES = STANDARD
JOBS_IN_WRAPPER = SIM

[image: hybrid wrapper]

Multiple wrappers at once

This is an special mode that allows you to use multiple independent wrappers on the same experiment. By using an special variable that allows to define subwrapper sections

[Wrapper]
TYPE = multi # REQUIRED
WRAPPER_LIST = wrapper_0,wrapper_1

[wrapper_0]
TYPE = vertical
JOBS_IN_WRAPPER = SIM

[wrapper_1]
TYPE = vertical
JOBS_IN_WRAPPER = DA&REDUCE

[image: multi wrapper]

Summary

In autosubmit_cxxx.conf:

Basic Configuration of wrapper
#TYPE = {vertical,horizontal,horizontal-vertical,vertical-horizontal} # REQUIRED
JOBS_IN_WRAPPER = Sections that should be wrapped together ex SIM
METHOD : Select between MACHINESFILES or Shared-Memory.
MIN_WRAPPED set the minim number of jobs that should be included in the wrapper. DEFAULT = 2
MAX_WRAPPED set the maxim number of jobs that should be included in the wrapper. DEFAULT = TOTALJOBS
Policy : Select the behaviour of the inner jobs Strict/Flexible/Mixed
EXTEND_WALLCLOCK: Allows to extend the wallclock by the max wallclock of the horizontal package (max inner job). Values are integer units (0,1,2)
RETRIALS : Enables a retrial mechanism for vertical wrappers, or default retrial mechanism for the other wrappers

[wrapper]
TYPE = Vertical #REQUIRED
JOBS_IN_WRAPPER = SIM # Job types (as defined in jobs_cxxx.conf) separated by space. REQUIRED only if vertical-mixed
MIN_WRAPPED = 2
MAX_WRAPPED = 9999 # OPTIONAL. Integer value, overrides TOTALJOBS
CHECK_TIME_WRAPPER = # OPTIONAL. Time in seconds, overrides SAFETYSLEEPTIME
POLICY = flexible # OPTIONAL, Wrapper policy, mixed, flexible, strict
QUEUE = bsc_es # If not specified, queue will be the same of the first SECTION specified on JOBS_IN_WRAPPER
#EXPORT = Allows to run an env script or load some modules before running this wrapper. # If not specified, export value will be the same of the first SECTION specified on JOBS_IN_WRAPPER

In platforms_cxxx.conf:

[marenostrum4]
...
MAX_WALLCLOCK =
MAX_PROCESSORS =
PROCESSORS_PER_NODE = 48

How to get details about the experiment

To get details about the experiment, use the command:

autosubmit describe EXPID

EXPID is the experiment identifier.

It displays information about the experiment. Currently it describes owner,description_date,model,branch and hpc

Options:

usage: autosubmit describe [-h] expid

 expid experiment identifier
 -h, --help show this help message and exit

Example:

autosubmit describe cxxx

How to get stats from your experiment

	How to extract information about the experiment parameters

	How to monitor job statistics

	How to add your particular statistics

	Console output description

	Diagram output description

	How to get details about the experiment

How to extract information about the experiment parameters

This procedure allows you to extract the experiment variables that you want.

The command can be called with:

autosubmit report EXPID -t "absolute_file_path"

Alternatively it also can be called as follows:

autosubmit report expid -all

Or combined as follows:

autosubmit report expid -all -t "absolute_file_path"

Options:

usage: autosubmit report [-all] [-t] [-fp] [-p] expid

 expid Experiment identifier

 -t, --template <path_to_template> Allows to select a set of parameters to be extracted

 -fp, --show_all_parameters All parameters will be extracted to a different file

 -fp, --folder_path By default, all parameters will be put into experiment tmp folder

 -p, --placeholders disable the replacement by - if the variable doesn't exist

Template format and example:

Autosubmit parameters are encapsulated by %_%, once you know how the parameter is called you can create a template similar to the one as follows:

- **CHUNKS:** %NUMCHUNKS% - %CHUNKSIZE% %CHUNKSIZEUNIT%
- **VERSION:** %VERSION%
- **MODEL_RES:** %MODEL_RES%
- **PROCS:** %XIO_NUMPROC% / %NEM_NUMPROC% / %IFS_NUMPROC% / %LPJG_NUMPROC% / %TM5_NUMPROC_X% / %TM5_NUMPROC_Y%
- **PRODUCTION_EXP:** %PRODUCTION_EXP%
- **OUTCLASS:** %BSC_OUTCLASS% / %CMIP6_OUTCLASS%

This will be understood by Autosubmit and the result would be similar to:

- CHUNKS: 2 - 1 month
- VERSION: trunk
- MODEL_RES: LR
- PROCS: 96 / 336 / - / - / 1 / 45
- PRODUCTION_EXP: FALSE
- OUTCLASS: reduced / -

Although it depends on the experiment.

If the parameter doesn’t exists, it will be returned as ‘-’ while if the parameter is declared but empty it will remain empty

List of all parameters example:

On the other hand, if you use the option -l autosubmit will write a file called parameter_list_<todaydate>.txt containing all parameters in the format as follows:

HPCQUEUE=bsc_es
HPCARCH=marenostrum4
LOCAL_TEMP_DIR=/home/dbeltran/experiments/ASlogs
NUMCHUNKS=1
PROJECT_ORIGIN=https://earth.bsc.es/gitlab/es/auto-ecearth3.git
MARENOSTRUM4_HOST=mn1.bsc.es
NORD3_QUEUE=bsc_es
NORD3_ARCH=nord3
CHUNKSIZEUNIT=month
MARENOSTRUM4_LOGDIR=/gpfs/scratch/bsc32/bsc32070/a01w/LOG_a01w
PROJECT_COMMIT=
SCRATCH_DIR=/gpfs/scratch
HPCPROJ=bsc32
NORD3_BUDG=bsc32

How to monitor job statistics

The following command could be adopted to generate the plots for visualizing the jobs statistics of the experiment at any instance:

autosubmit stats EXPID

EXPID is the experiment identifier.

Options:

usage: autosubmit stats [-h] [-ft] [-fp] [-o {pdf,png,ps,svg}] expid

 expid experiment identifier

 -h, --help show this help message and exit
 -ft FILTER_TYPE, --filter_type FILTER_TYPE
 Select the job type to filter the list of jobs
 -fp FILTER_PERIOD, --filter_period FILTER_PERIOD
 Select the period of time to filter the jobs
 from current time to the past in number of hours back
 -o {pdf,png,ps,svg}, --output {pdf,png,ps,svg}
 type of output for generated plot
 --hide, hide the plot
 -nt --notransitive
 prevents doing the transitive reduction when plotting the workflow

Example:

autosubmit stats cxxx

The location where user can find the generated plots with date and timestamp can be found below:

<experiments_directory>/cxxx/plot/cxxx_statistics_<date>_<time>.pdf

How to add your particular statistics

Although Autosubmit saves several statistics about your experiment, as the queueing time for each job, how many failures per job, etc.
The user also might be interested in adding his particular statistics to the Autosubmit stats report (`autosubmit stats EXPID`).
The allowed format for this feature is the same as the Autosubmit configuration files: INI style. For example:

[COUPLING]
LOAD_BALANCE = 0.44
RECOMMENDED_PROCS_MODEL_A = 522
RECOMMENDED_PROCS_MODEL_B = 418

The location where user can put this stats is in the file:

<experiments_directory>/cxxx/tmp/cxxx_GENERAL_STATS

Hint

If it is not yet created, you can manually create the file: `expid_GENERAL_STATS` inside the `tmp` folder.

Console output description

Example:

Period: 2021-04-25 06:43:00 ~ 2021-05-07 18:43:00
Submitted (#): 37
Run (#): 37
Failed (#): 3
Completed (#): 34
Queueing time (h): 1.61
Expected consumption real (h): 2.75
Expected consumption CPU time (h): 3.33
Consumption real (h): 0.05
Consumption CPU time (h): 0.06
Consumption (%): 1.75

Where:

	Period: Requested time frame.

	Submitted: Total number of attempts that reached the SUBMITTED status.

	Run: Total number of attempts that reached the RUNNING status.

	Failed: Total number of FAILED attempts of running a job.

	Completed: Total number of attempts that reached the COMPLETED status.

	Queueing time (h): Sum of the time spent queuing by attempts that reached the COMPLETED status, in hours.

	Expected consumption real (h): Sum of wallclock values for all jobs, in hours.

	Expected consumption CPU time (h): Sum of the products of wallclock value and number of requested processors for each job, in hours.

	Consumption real (h): Sum of the time spent running by all attempts of jobs, in hours.

	Consumption CPU time (h): Sum of the products of the time spent running and number of requested processors for each job, in hours.

	Consumption (%): Percentage of Consumption CPU time relative to Expected consumption CPU time.

Diagram output description

The main stats output is a bar diagram. On this diagram, each job presents these values:

	Queued (h): Sum of time spent queuing for COMPLETED attempts, in hours.

	Run (h): Sum of time spent running for COMPLETED attempts, in hours.

	Failed jobs (#): Total number of FAILED attempts.

	Fail Queued (h): Sum of time spent queuing for FAILED attempts, in hours.

	Fail Run (h): Sum of time spent running for FAILED attempts, in hours.

	Max wallclock (h): Maximum wallclock value for all jobs in the plot.

Notice that the left scale of the diagram measures the time in hours, and the right scale measures the number of attempts.

How to recover and restart your experiment workflow

	How to restart the experiment

	How to stop the experiment

	How to change the job status stopping autosubmit

	How to change the job status without stopping autosubmit

How to restart the experiment

This procedure allows you to restart an experiment. Autosubmit looks for the COMPLETED file for jobs that are considered active (SUBMITTED, QUEUING, RUNNING), UNKNOWN or READY.

Warning

You can only restart the experiment if there are not active jobs. You can use -f flag to cancel running jobs automatically.

You must execute:

autosubmit recovery EXPID

EXPID is the experiment identifier.

Options:

usage: autosubmit recovery [-h] [-np] [--all] [-s] [-group_by {date,member,chunk,split} -expand -expand_status] expid

 expid experiment identifier

 -h, --help show this help message and exit
 -np, --noplot omit plot
 -f Allows to perform the recovery even if there are active jobs
 --all Get all completed files to synchronize pkl
 -s, --save Save changes to disk
 -group_by {date,member,chunk,split,automatic}
 criteria to use for grouping jobs
 -expand, list of dates/members/chunks to expand
 -expand_status, status(es) to expand
 -nt --notransitive
 prevents doing the transitive reduction when plotting the workflow
 -nl --no_recover_logs
 prevents the recovering of log files from remote platforms
 -d --detail
 Shows Job List view in terminal

Example:

autosubmit recovery cxxx -s

In order to understand more the grouping options, which are used for visualization purposes, please check Grouping jobs.

Hint

When we are satisfied with the results we can use the parameter -s, which will save the change to the pkl file and rename the update file.

The –all flag is used to synchronize all jobs of our experiment locally with the information available on the remote platform
(i.e.: download the COMPLETED files we may not have). In case new files are found, the pkl will be updated.

Example:

autosubmit recovery cxxx --all -s

How to change the job status stopping autosubmit

This procedure allows you to modify the status of your jobs.

Warning

Beware that Autosubmit must be stopped to use setstatus.
Otherwise a running instance of Autosubmit, at some point, will overwrite any change you may have done.

You must execute:

autosubmit setstatus EXPID -fs STATUS_ORIGINAL -t STATUS_FINAL -s

EXPID is the experiment identifier.
STATUS_ORIGINAL is the original status to filter by the list of jobs.
STATUS_FINAL the desired target status.

Options:

usage: autosubmit setstatus [-h] [-np] [-s] [-t] [-o {pdf,png,ps,svg}] [-fl] [-fc] [-fs] [-ft] [-group_by {date,member,chunk,split} -expand -expand_status] [-cw] expid

 expid experiment identifier

 -h, --help show this help message and exit
 -o {pdf,png,ps,svg}, --output {pdf,png,ps,svg}
 type of output for generated plot
 -np, --noplot omit plot
 -s, --save Save changes to disk
 -t, --status_final Target status
 -fl FILTER_LIST, --list
 List of job names to be changed
 -fc FILTER_CHUNK, --filter_chunk
 List of chunks to be changed
 -fs FILTER_STATUS, --filter_status
 List of status to be changed
 -ft FILTER_TYPE, --filter_type
 List of types to be changed
 -ftc FILTER_TYPE_CHUNK --filter_type_chunk
 Accepts a string with the formula: "[19601101 [fc0 [1 2 3 4] Any [1]] 19651101 [fc0 [16 30]]],SIM,SIM2"
 Where SIM, SIM2 are section (job types) names that also accept the keyword "Any" so the changes apply to all sections.
 Starting Date (19601101) does not accept the keyword "Any", so you must specify the starting dates to be changed.
 You can also specify date ranges to apply the change to a range on dates.
 Member names (fc0) accept the keyword "Any", so the chunks ([1 2 3 4]) given will be updated for all members.
 Chunks must be in the format "[1 2 3 4]" where "1 2 3 4" represent the numbers of the chunks in the member,
 no range format is allowed.
 -d When using the option -ftc and sending this flag, a tree view of the experiment with markers indicating which jobs
 have been changed will be generated.
 --hide, hide the plot
 -group_by {date,member,chunk,split,automatic}
 criteria to use for grouping jobs
 -expand, list of dates/members/chunks to expand
 -expand_status, status(es) to expand
 -nt --notransitive
 prevents doing the transitive reduction when plotting the workflow
 -cw --check_wrapper
 Generate the wrapper in the current workflow

Examples:

autosubmit setstatus cxxx -fl "cxxx_20101101_fc3_21_sim cxxx_20111101_fc4_26_sim" -t READY -s
autosubmit setstatus cxxx -fc "[19601101 [fc1 [1]]]" -t READY -s
autosubmit setstatus cxxx -fs FAILED -t READY -s
autosubmit setstatus cxxx -ft TRANSFER -t SUSPENDED -s
autosubmit setstatus cxxx -ftc "[19601101 [fc1 [1]], SIM" -t SUSPENDED -s

Date (month) range example:

autosubmit setstatus cxxx -ftc "[1960(1101-1201) [fc1 [1]], SIM" -t SUSPENDED -s

This example will result changing the following jobs:

cxxx_19601101_fc1_1_SIM
cxxx_19601201_fc1_1_SIM

Date (day) range example:

autosubmit setstatus cxxx -ftc "[1960(1101-1105) [fc1 [1]], SIM" -t SUSPENDED -s

Result:

cxxx_19601101_fc1_1_SIM
cxxx_19601102_fc1_1_SIM
cxxx_19601103_fc1_1_SIM
cxxx_19601104_fc1_1_SIM
cxxx_19601105_fc1_1_SIM

This script has two mandatory arguments.

The -t where you must specify the target status of the jobs you want to change to:

{READY,COMPLETED,WAITING,SUSPENDED,FAILED,UNKNOWN}

The second argument has four alternatives, the -fl, -fc, -fs and -ft; with those we can apply a filter for the jobs we want to change:

	
	The -fl variable receives a list of job names separated by blank spaces: e.g.:

	"cxxx_20101101_fc3_21_sim cxxx_20111101_fc4_26_sim"

If we supply the key word “Any”, all jobs will be changed to the target status.

	
	The variable -fc should be a list of individual chunks or ranges of chunks in the following format:

	[19601101 [fc0 [1 2 3 4] fc1 [1]] 19651101 [fc0 [16-30]]]

	
	The variable -fs can be the following status for job:

	{Any,READY,COMPLETED,WAITING,SUSPENDED,FAILED,UNKNOWN}

	The variable -ft can be one of the defined types of job.

The variable -ftc acts similar to -fc but also accepts the job types. It does not accept chunk ranges e.g. “1-10”, but accepts the wildcard “Any” for members and job types. Let’s look at some examples.

	
	Using -ftc to change the chunks “1 2 3 4” of member “fc0” and chunk “1” of member “fc1” for the starting date “19601101”, where these changes apply only for the “SIM” jobs:

	[19601101 [fc0 [1 2 3 4] fc1 [1]]],SIM

	
	Using -ftc to change the chunks “1 2 3 4” of all members for the starting date “19601101”, where these changes apply only for the “SIM” jobs:

	[19601101 [Any [1 2 3 4]]],SIM

	
	Using -ftc to change the chunks “1 2 3 4” of “fc0” members for the starting date “19601101”, where these changes apply to all jobs:

	[19601101 [fc0 [1 2 3 4]]],Any

Try the combinations you come up with. Autosubmit will supply with proper feedback when a wrong combination is supplied.

Hint

When we are satisfied with the results we can use the parameter -s, which will save the change to the pkl file. In order to understand more the grouping options, which are used for visualization purposes, please check Grouping jobs.

How to change the job status without stopping autosubmit

This procedure allows you to modify the status of your jobs without having to stop Autosubmit.

You must create a file in <experiments_directory>/<expid>/pkl/ named:

updated_list_<expid>.txt

Format:

This file should have two columns: the first one has to be the job_name and the second one the status.

Options:

READY,COMPLETED,WAITING,SUSPENDED,FAILED,UNKNOWN

Example:

vi updated_list_cxxx.txt

cxxx_20101101_fc3_21_sim READY
cxxx_20111101_fc4_26_sim READY

If Autosubmit finds the above file, it will process it. You can check that the processing was OK at a given date and time,
if you see that the file name has changed to:

update_list_<expid>_<date>_<time>.txt

Note

A running instance of Autosubmit will check the existence of adobe file after checking already submitted jobs.
It may take some time, depending on the setting SAFETYSLEEPTIME.

Warning

Keep in mind that autosubmit reads the file automatically so it is suggested to create the file in another location like /tmp or /var/tmp and then copy/move it to the pkl folder. Alternatively you can create the file with a different name an rename it when you have finished.

How to stop the experiment

You can stop Autosubmit by sending a signal to the process.
To get the process identifier (PID) you can use the ps command on a shell interpreter/terminal.

ps -ef | grep autosubmit
dbeltran 22835 1 1 May04 ? 00:45:35 autosubmit run cxxy
dbeltran 25783 1 1 May04 ? 00:42:25 autosubmit run cxxx

To send a signal to a process you can use kill also on a terminal.

To stop immediately experiment cxxx:

kill -9 22835

Important

In case you want to restart the experiment, you must follow the
How to restart the experiment procedure, explained below, in order to properly resynchronize all completed jobs.

Grouping jobs

Other than the filters, another option for large workflows is to group jobs. This option is available with the group_by keyword, which can receive the values {date,member,chunk,split,automatic}.

For the first 4 options, the grouping criteria is explicitly defined {date,member,chunk,split}.
In addition to that, it is possible to expand some dates/members/chunks that would be grouped either/both by status or/and by specifying the date/member/chunk not to group.
The syntax used in this option is almost the same as for the filters, in the format of [date1 [member1 [chunk1 chunk2] member2 [chunk3 ...] ...] date2 [member3 [chunk1]] ...]

Important

The grouping option is also in autosubmit monitor, create, setstatus and recovery

Examples:

Consider the following workflow:

[image: simple workflow]

Group by date

-group_by=date

[image: group date]

-group_by=date -expand="[20000101]"

[image: group date expand]

-group_by=date -expand_status="FAILED RUNNING"

[image: group date expand status]

-group_by=date -expand="[20000101]" -expand_status="FAILED RUNNING"

[image: group date expand status]

Group by member

-group_by=member

[image: group member]

-group_by=member -expand="[20000101 [fc0 fc1] 20000202 [fc0]]"

[image: group member expand]

-group_by=member -expand_status="FAILED QUEUING"

[image: group member expand]

-group_by=member -expand="[20000101 [fc0 fc1] 20000202 [fc0]]" -expand_status="FAILED QUEUING"

[image: group member expand]

Group by chunk

-group_by=chunk

[image: group chunk]

Synchronize jobs

If there are jobs synchronized between members or dates, then a connection between groups is shown:

[image: group synchronize]

-group_by=chunk -expand="[20000101 [fc0 [1 2]] 20000202 [fc1 [2]]]"

[image: group chunk expand]

-group_by=chunk -expand_status="FAILED RUNNING"

[image: group chunk expand]

-group_by=chunk -expand="[20000101 [fc0 [1]] 20000202 [fc1 [1 2]]]" -expand_status="FAILED RUNNING"

[image: group chunk expand]

Group by split

If there are chunk jobs that are split, the splits can also be grouped.

[image: split workflow]

-group_by=split

[image: group split]

Understanding the group status

If there are jobs with different status grouped together, the status of the group is determined as follows:
If there is at least one job that failed, the status of the group will be FAILED. If there are no failures, but if there is at least one job running, the status will be RUNNING.
The same idea applies following the hierarchy: SUBMITTED, QUEUING, READY, WAITING, SUSPENDED, UNKNOWN. If the group status is COMPLETED, it means that all jobs in the group were completed.

Automatic grouping

For the automatic grouping, the groups are created by collapsing the split->chunk->member->date that share the same status (following this hierarchy).
The following workflow automatic created the groups 20000101_fc0, since all the jobs for this date and member were completed, 20000101_fc1_3, 20000202_fc0_2, 20000202_fc0_3 and 20000202_fc1, as all the jobs up to the respective group granularity share the same - waiting - status.

For example:

[image: group automatic]

Especially in the case of monitoring an experiment with a very large number of chunks, it might be useful to hide the groups created automatically. This allows to better visualize the chunks in which there are jobs with different status, which can be a good indication that there is something currently happening within such chunks (jobs ready, submitted, running, queueing or failed).

-group_by=automatic --hide_groups

How to check your experiment workflow status

	How to generate cmd files
	Usage

	Example

	How to monitor the experiment

	Grouping jobs

How to generate cmd files

To generate the cmd files of the current non-active jobs experiment, it is possible to use the command:

autosubmit inspect EXPID

EXPID is the experiment identifier.

Usage

Options:

usage: autosubmit inspect [-h] [-fl] [-fc] [-fs] [-ft] [-cw] expid

 expid experiment identifier

 -h, --help show this help message and exit

 -fl FILTER_LIST, --list
 List of job names to be generated
 -fc FILTER_CHUNK, --filter_chunk
 List of chunks to be generated
 -fs FILTER_STATUS, --filter_status
 List of status to be generated
 -ft FILTER_TYPE, --filter_type
 List of types to be generated

 -cw --checkwrapper
 Generate the wrapper cmd with the current filtered jobs

 -f --force
 Generate all cmd files

Example

with autosubmit.lock present or not:

autosubmit inspect expid

with autosubmit.lock present or not:

autosubmit inspect expid -f

without autosubmit.lock:

autosubmit inspect expid -fl [-fc,-fs or ft]

To generate cmd for wrappers:

autosubmit inspect expid -cw -f

With autosubmit.lock and no (-f) force, it will only generate all files that are not submitted.

Without autosubmit.lock, it will generate all unless filtered by -fl,fc,fs or ft.

How to monitor the experiment

To monitor the status of the experiment, use the command:

autosubmit monitor EXPID

EXPID is the experiment identifier.

Options:

usage: autosubmit monitor [-h] [-o {pdf,png,ps,svg,txt}] [-group_by {date,member,chunk,split} -expand -expand_status] [-fl] [-fc] [-fs] [-ft] [-cw] expid [-txt] [-txtlog]

 expid Experiment identifier.

 -h, --help Show this help message and exit.
 -o {pdf,png,ps,svg}, --output {pdf,png,ps,svg,txt}
 Type of output for generated plot (or text file).
 -group_by {date,member,chunk,split,automatic}
 Criteria to use for grouping jobs.
 -expand, List of dates/members/chunks to expand.
 -expand_status, Status(es) to expand.
 -fl FILTER_LIST, --list
 List of job names to be filtered.
 -fc FILTER_CHUNK, --filter_chunk
 List of chunks to be filtered.
 -fs FILTER_STATUS, --filter_status
 Status to be filtered.
 -ft FILTER_TYPE, --filter_type
 Type to be filtered.
 --hide, Hide the plot.
 -txt, --text
 Generates a tree view format that includes job name, children number, and status in a file in the /status/ folder. If possible, shows the results in the terminal.
 -txtlog, --txt_logfiles
 Generates a list of job names, status, .out path, and .err path as a file in /status/ (AS <3.12 behaviour).
 -nt --notransitive
 Prevents doing the transitive reduction when plotting the workflow.
 -cw --check_wrapper
 Generate the wrapper in the current workflow.

Example:

autosubmit monitor cxxx

The location where the user can find the generated plots with date and timestamp can be found below:

<experiments_directory>/cxxx/plot/cxxx_<date>_<time>.pdf

The location where the user can find the txt output containing the status of each job and the path to out and err log files.

<experiments_directory>/cxxx/status/cxxx_<date>_<time>.txt

Hint

Very large plots may be a problem for some pdf and image viewers.
If you are having trouble with your usual monitoring tool, try using svg output and opening it with Google Chrome with the SVG Navigator extension installed.

In order to understand more the grouping options, please check Grouping jobs.

 _images/Dashed.png
UNKNOWN

WAITING

DELAYED

READY

QUEUING

SKIPPED

_images/Select_members.png
'UNKNOWN

(] [pevee] o] [(] (Y

a03e_19600101_1_REDUCE_AN

QUEUING

SKIPPED

a03e_19600101_2 REDUCE_AN

a03e_19600101_03_REDUCE

_images/dasim.png
ik omra or_1sou | [sigh omie e 1 e

] ovzomna one 1 sou | [asgh 3mna o 1 s

T er—r—— |

o oo | [o oot | []| [oo oo | [vor 33| [o oo [s o w25 | [omvr g4 o ot .3 | | a2 o 2504 | [ot 3 4 .k.,mw...»\...\:>g

e ——

e iE

o mnmnacon 2| [k zorama s 2 s | ora mmmne o 2 sne || s

A2 S| | ahoh 0304 004 2 504 | | aheh 0030014

41k 20009142 DA

_images/date-synchronize.png
et S| [
| | | |

| A \

000_20010101_fel 2_SIM | | a000_20000101_fc0_2_SIM | | 000_I_ASIM | | 400020000101 fe1 2 SIM | | 2000_20010101_fc0_2_SIM

A A l

<000_20010101_fel 3_SIM | | a000_20000101_fc0_3_SIM | | 0002 ASIM | | 400020000101 fc1_3.SIM | | 2000_20010101_fc0_3 SIM

D003 ASIM

_images/dependencies_previous.png
WAITING

a00e_19900101_Member1_ini

A J
a00e_19900101_Memberl_1_sim

AN

QUEUING

a00e_19900101_Member2_ini

y
a00e_19900101_Member2_1_sim

A

a00c_19900101_Memberl_1_postprocess

a00e_19900101_Memberl_2_sim

a00c_19900101_Member2_1_postprocess

a00e_19900101_Member2_2_sim

L

~

a00c_19900101_Memberl_2_postprocess

a00e_19900101_Memberl_3_sim

/

N

a00c_19900101_Memberl_3_postprocess

a00e_19900101_Memberl_4_sim

1\

[

a00c_19900101_Member2_2_postprocess

a00e_19900101_Member2_3_sim

—

a00c_19900101_Member2_3_postprocess

a00e_19900101_Member2_4_sim

/ v

a00c_19900101_Memberl_4_postprocess

a00e_19900101_Memberl_5_sim

a00c_19900101_Member2_4_postprocess

a00e_19900101_Member2_5_sim

'

a00c_19900101_Memberl_5_postprocess

A J

a00c_19900101_Member2_5_postprocess

nav.xhtml

 Table of Contents

 		
 Welcome to autosubmit’s documentation!

 		
 Changelog

 		
 Configuration changes

 		
 Examples

 		
 Configuration

 		
 Wrappers definition

 		
 Loops definition

 		
 DEPENDENCIES

 		
 Basic

 		
 New format

 		
 Example 1: New format with specific dependencies

 		
 Introduction

 		
 What is Autosubmit ?

 		
 Why is Autosubmit needed ?

 		
 How does Autosubmit work ?

 		
 Experiment creation

 		
 Experiment configuration

 		
 Experiment run

 		
 Tutorial start guide

 		
 Pre-requisites

 		
 Description of most used commands

 		
 Create a new experiment

 		
 Run and monitoring:

 		
 Configuration summary:

 		
 Final step: Modify and run

 		
 Developing a project

 		
 Expdef configuration

 		
 Autosubmit configuration

 		
 Jobs configuration

 		
 Platform configuration

 		
 Proj configuration

 		
 Proj configuration:: Full example

 		
 Detailed platform configuration

 		
 Installation

 		
 How to install

 		
 How to configure

 		
 Examples

 		
 Sequence of instructions to install Autosubmit and its dependencies in Ubuntu.

 		
 Sequence of instructions to install Autosubmit and its dependencies with conda.

 		
 Usage

 		
 Command list

 		
 Tutorials (How to)

 		
 Defining the workflow

 		
 Simple workflow

 		
 Running jobs once per startdate, member or chunk

 		
 Dependencies

 		
 Dependencies with previous jobs

 		
 Dependencies between running levels

 		
 Job frequency

 		
 Job synchronize

 		
 Job split

 		
 Job delay

 		
 Frequent Questions and Answers

 		
 Troubleshooting

 		
 How to change the job status stopping autosubmit

 		
 How to change the job status without stopping autosubmit

 		
 My project parameters are not being substituted in the templates

 		
 Unable to recover remote logs files.

 		
 Error on create caused by a configuration parsing error

 		
 Other possible errors

 		
 Error codes and solutions

 		
 Experiment Locked - Critical Error 7000

 		
 Database Issues - Critical Error codes [7001-7005]

 		
 Default Solution

 		
 Wrong User Input - Critical Error codes [7010-7030]

 		
 Default Solution

 		
 Platform issues - Critical Error codes. Local [7040-7050] and remote [7050-7060]

 		
 Default Solution

 		
 Uncatalogued codes - Critical Error codes [7060+]

 		
 Default Solution

 		
 Minor errors - Error codes [6000+]

 		
 Developing a project

 		
 Variables reference

 		
 Job variables

 		
 Platform variables

 		
 Project variables

 		
 Performance Metrics

 		
 Module documentation

 		
 autosubmit

 		
 autosubmit.config

 		
 autosubmit.config.basicConfig

 		
 autosubmit.config.config_common

 		
 autosubmit.database

 		
 autosubmit.git

 		
 autosubmit.job

 		
 autosubmit.monitor

 		
 autosubmit.platform

 		
 Autosubmit GUI

 		
 Autosubmit GUI Main Page

 		
 Experiment Information

 		
 Tree Representation

 		
 Graph Representation

 		
 Autosubmit Log

 		
 Performance Metrics

 		
 Autosubmit Statistics

_images/experiment_delay_doc.png
UNKNOWN

WAITING

READY

a00z_20000101_fc0_ini

!

a00z_20000101_fc0_1_sim

N

QUEUING

a00z_20000101_fc1_ini

I

a00z_20000101_fc1_1_sim

N

a00z_20000101_fc0_1_post

a00z_20000101_fc0_2.

im

a00z_20000101_fc1_1_post

a00z_20000101_fc1_2_sim

e

~,

a00z_20000101_fc0_2_post

a00z_20000101_fc0_3_sim

T

R

a00z_20000101_fc1_2_post

a00z_20000101_fc1_3_sim

/=

a00z_20000101_fc0_3_asim

a00z_20000101_fc0_4_sim

a00z_20000101_fc1_3_asim

a00z_20000101_fc1_4_sim

L~

L~

a00z_20000101_fc0_3_post

a00z_20000101_fc0_4_asim

a00z_20000101_fc1_3_post

a00z_20000101_fc1_4_asim

A 4

00z_20000101_fc0_4_post

A 2

a00z_20000101_fc1_4_post

_images/fig1.png
v- XXXX
v- conf

autosubmit_xxxx.conf

=] expdef xxxx.conf
= jobs_xxxx.conf

= platforms_xxxx.conf
proj_xxxx.conf
>- pkl

P- plot

>- proj
>- tmp

_images/dependencies_running.png
WAITING

a00e_19900101_Member1_ini

I

a00e_19900101_Memberl_1_sim

~,

QUEUING

a00e_19900101_Memberl_2_sim

A J

T~

a00e_19900101_Member]_

m

v \

a00e_19900101_Member2_ini

A J

a00e_19900101_Member2_1_sim

A

a00c_19900101_Member2_1_postprocess

a00e_19900101_Member2_2_sim

a00c_19900101_Memberl_3_postprocess

a00e_19900101_Memberl_4_sim

e

T~

a00c_19900101_Memberl_4_postprocess

a00e_19900101_Memberl_5_sim

a00c_19900101_Memberl_1_postprocess

a00c_19900101_Memberl_2_postprocess

/

a00c_19900101_Memberl_5_postprocess

L

T~

a00c_19900101_Member2_2_postprocess

a00e_19900101_Member2_3_sim

PN

a00c_19900101_Member2_3_postprocess

—

a00c_19900101_Member2_4_postprocess

/

a00e_19900101_Member2_4_sim

a00e_19900101_Member2_5_sim

a00c_19900101_Member2_5_postprocess

=

a00e_19900101_Member2_combine

_images/dummy.png
UNKNOWN WAITING

DELAYED

024 LOCAL SETUP

|

024 REMOTE_SETUP

I

2024 20000101 fe0_INI

I

2024 20000101_fc0_1_SIM.

]
024 20000101 f0_1_POST

A 4

024 20000101_fc0 1 CLEAN

A

024 20000101_fc) TRANSFER

QUEUING

SKIPPED

_images/fig2_gui.png
A Autosubmit Searcher

Show Detailed Data Clear

aOyh 11/12 [running] a26q 1612/ 2403 [Running] a28v 10262403 [runnin]
ANNNANNANNNNNY AN NNANNNNY ENNNAN]
Owner: molid Owner: tarsouze Owner: tarsouze
MONARCH - Global Aerosol 1.5 Operational simulation Control expriment of EC-Earth3.2-VHR experiment for Historical expriment of EC-Earth3.2-VHR experiment for
PRIMAVERA. Follows the 50 years spin-up of experiment a142. PRIMAVERA. Follows the 50 years spin-up of experiment a142.
=l or \
= e | [] | ore
HPC: marenostruma HPC: marenostruma
178/526 [running] a2au 186/526 [Running] a2d1 7649 /12781 [runnin]
ANNNN] ANNNANNNNY
Owner: fpalmeir Owner: mguevara
extension of a2al Extension of a2am auto-CALIOPE test
=l or | (o] | ore | [] | Vore

HPC: marenostruma HPC: marenostruma HPC: marenostrumd

_images/fig3.png
WAITING READY - QUEUING

x0cx_19900101_fcO_1_CLEAN

v
x0cx_19900101_fc0_3_SIM

v
0x_19900101_fc0_3_POST | | xo0tx_19900101_fcO_2_POST

A 4 A

00x_19900101_fcO_3_CLEAN | | xxxx_19900101_fc0_2_CLEAN

~,

x00x_19900101_fcO_TRANSFER

_images/fig1_gui.png
A Autosubmit Searcher

ibmit, you wil find . Search by oxpd, d

_images/fig2.png
Start dates, members
and chunks (number
and length).

Experiment project
source: origin (version

control system or path)
and project configura-

tion file path.

Workflow to be run:
scripts to execute, de-
pendencies between
tasks, task requirements
(processors, wallclock
time...) and platform to
use.

4

expdef_xxxx.conf

jobs_xxxx.conf

HPC, fat-nodes and sup-
porting computers con-
figuration.

Usually provided by
technicians, users will
only have to change
login and accounting

options for HPCs.

Project dependant ex-
periment variables that
Autosubmit will substi-
tute in the scripts to be
run.

4

platforms_xxxx.conf

proj_xxxx.conf

_images/fig3_gui.png
A Autosubmit Searcher

Search Experiments by Expid or Description...

aOyh 1/12 [RunninG]
AANNNNNANNNNNY

Owner: molid
MONARCH - Global Aerosol 1.5 Operational simulation

\ |
Avg. Queue 3 min. Avg. Run 9 min.

HPC: marenostruma

178/526 PRunninG)
azat

Owner: jgarcit
extension of a2al

Avg. Queue 44 min.

\ e \

Avg. Run 41 min.

HPC: marenostruma

Clear

a26q 1612/ 2403 [RunninG |

Owner: tarsouze
Control expriment of EC-Earth3.2-VHR experiment for
PRIMAVERA. Follows the 50 years spin-up of experiment a142.

Avg. Queue 212 min.

\ e \

Avg. Run 82 min.

HPC: marenostruma

a2au 186/526 [RunninG |
ANNAN]

Owner: fpalmeir
Extension of a2am

Avg. Queue 38 min.

\ e \

Avg. Run 47 min.

HPC: marenostruma

E3 &3

1026/2403 fRunninG
A28V

Owner: tarsouze
Historical expriment of EC-Earth3.2-VHR experiment for
PRIMAVERA. Follows the 50 years spin-up of experiment a142.

Avg. Queue 209 min.

[Running: 1}
[Failed: 1) « a28y19500101_c0_252_ CLEAN

| e

Avg. Run 87 min.

HPC: marenostrumd

7649 /12781 fRunninG
201

Owner: mguevara
auto-CALIOPE test

Avg. Queue 5 min.

| e

Avg. Run 15 min.

HPC: marenostrumd

_images/fig4_gui.jpg
a26q 1780/ 2403 [runnino] a2eq /‘n 2213/3138

[ANNNNN NN
ovrtasoas =] e L

50 years spin-up of experiment a142.
years spin-up of exp (More

o

Avg. Queue 204 min. Avg. Run 82 min) (Sussendedisz)

HPC: marenostrumd. * 22eq 19861101 c03 CLEAN_MEMBER
* 22eq19971101.1c02.5.5M

* 22¢q.19801101.c04_CLEAN. MEMBER
* 226q19841101.c01_ CLEAN MEMBER
* 2261997101 1c00 1 TRANSFER

* 426q 19831101 100 CLEAN MEMBER
* 22¢19981101.1c02.5.

HPC: ecmt-xcd0

_images/fig5_gui.jpg
t01q 20/ 21 [ruinc]
AN

Owner: pechevar

weekly test case: T255L91-ORCAIL7S cold start

148 | run 0:03:18

Al avg. queue
SIM (4) : avg. queue 0:40:25 (4) | run 0:06:51 (4)
[Failed: 1) 1. 101_LOCAL_SETUP

HPC: marenostrumd.

_images/fig_graph_3.jpg

_images/fig_graph_4.jpg

_images/fig_experiment.jpg
A Autosubmit Searcher 06 (AcTivE [

TreeView Graph log Statisies Performance QuickView FAQ

[|

+ Pov 20625 Here goes the Job id
1+ [71060_20160625_000 3117 conuo
106 20160625_000_1LOCAL SEND_INITIAL SCOPLRED ~ 0:0018) + 0:01:00 Selct s Nodo 0500 mor nformaton.
1061 20160625_000 1 LOCAL SEND_INITAL EMISSIONS SEOMHATE ~ (00:19) + 0:02:51
1061 20160625_000 1 PREFROCYAR (NI
1060 20160625_000_1_S1 ENANG
. t5eu_20160625.000_1_REDLCE QNAEIND
106120160625 000 ARCHIVE GENAITNG
106 20160625 1 ARCHIVE REDUCE GNRITINS T3
106 20160625 000_ 1 CLEAN QNG TakGer
L 106 20160625 000 2 LOCAL SEND_INITIAL scompiees ~ (0:00:13) + 0:01:00
1 1061 20160625_000_ 2 LOCAL SEND_INITIAL EVISSIONS QM
106 20160625_000_2_ PREFROCVAR. (NN
1061 20160625 0002 HERES EHIRED
106 20160625_000_ 2.1 ENANG
106 20160625_000_2 REDUCE QIS
106 201606250002 ARCHIVE GENAITN
1 106 20160625 2 ARCHIVE REDUCE GNRIIND T3
1 106 20160625 0002, CLEAN GNRIINS) TakGer
o e
L 106 LOCAL SETUP scommuet ~ (00112 + 0:0000 Souncs
L) 106 LOCAL SEND_SOURCE scokste ~ (000:16) + 0251
" 106¢ LOCAL_SEND.STATIC scomedy ~ D:0:14) + 0:000
1064 REMOTE_COMPILE SR ~ (000:03) + 011257
1064 PREPROCTX (HATIND

_images/fig_graph_2.jpg
TreeView ~Graph log Statistics Performance QuickView FAQ

o o 03 0 == e

Selection Wrappers

#d0bs: 14| Chunk unt: day | Chunk size 1

asi_20210817.000.017 D

start: 20210377 End: 20210318

Section: T

Member: 000 Chunk:1
torms nord3. 1d: 308381

Wallcock: 0200

copy out |3

copy e [£°3
Subnit: 2021.03-221018:01 svep:008
Star: 2021.03-221018:08

® ®
@Oe e®

oot o (DY et [FRREE) [CRR avuin [ETY commtres [ERERERH] s [T} e

_images/fig_performance_1.jpg
TreeView Graph log Statistcs Performance QuickView FAQ

Parallelization: EZTJ Considered: (97)

08 # dobName Qe Run sy sy Energy S0 AsveD

SYPD: (XA

RSYPD: (EET) 1 abn 18500101 fe1_10_SM 00002 onaTsz 13069 B9s0000 oS00 1335 815
2 abn 18500101 fe1 1S 00048 0laTOs 13045 80000 8200000 1345 816
3 abn 18500101 fe1_12 S 0003 ovaT2 1S3 ceu00 ese00 138 ais
4 asn 18500101 fe1 135 00003 ovameo 19093 ca0000 w00 1325 &1
5 asn 18500101 fe1 14 M o002z ovasas tenr emwo0 emsowo 15 82
6 asn 18500101 fe1 15 M 00009 ovaT20 1wsST seN0l0 0 1a2 a7

Thereare some warnings abous the calclatons of peformance metics: [STONNAINAAR)

Metrics description:

Parallelization: Total numiber of cores allocated for the run, per SIM.
JPSY: Energy cost of a simulation, measured in Joules per simulated year.
‘SYPD: Simulated years per day for the model in a 24 h period.

ASYPD: Actual SYPD, this number should be lower than SYPD due to interruptions, queue waittime, data transfer or ssues with the model workflow: This is collected by measuring the time between first submission
and the date of arrival of the last history file on the storage file system.

‘GHSY: Core hours per simulated year. This s measured as the product of the model runtime for 1SY and the number of cores allocated. This is an average of the CHSY of all SMobs.

Considered: Scrollable st where each item inthe lst epresents job information showing Job Name, QUEUE and RUNNING time in Hrmm:ss format, CHSY, JPSY, and raw Energy consumption for that job. Note:
Energy values are only collected for those jobs running on MareNostrumd and using the atest version of Autosubmit. Subsequent development will expand this feature for other platforms.

Visit Performance Metrics Documentation for more details.

_images/fig_stat_1.jpg
TreeView Graph log Statistics

Statises

Secton Hours
Supply a Section (Type) in the appropriate textbox to filter the jobs that will be included in the query. Also, you can also supply the Hours
value that determines how many hours before the current time you want to query. Leave both empty and a query for Any Section since the
date of creation of the experiment will be executed

Press (EZREIEY to generate the statistics, this will generate a Bar Chart and some extra statstics below. Drag the mouse inside the chart
to zoom in; however, zoom in capabilities are not unlimited, o try to narrow your query.

_images/fig_log_1.jpg
TreeView Graph log Stistics

Press (EXEY to see the last 50 lines of the running log of this experiment. If the experiment is running, the log will update automatically.

_images/fig_log_2.jpg

_images/fig_tree_2.jpg
A Autosubmit Searcher. a3ll ACTIVE

TreeView Graph log Swfistcs Performance QuickView FAQ

+ Pansononr
<+ P 20210317000 130 commen QI
S31_2021097.000 LOCAL SEND SPINUP scoupeT (0:0:14) + 0047 8008
L 451 20210517.000_1 LOCAL SEND_INTTAL scoMmRTED ~ (0018 + 010044 S0
331 20210317.000 1 PREPROCVAR wCoMlTI ~ 00183 + 00729
) a3 20210517_000_1 S scowmem ~ (0:00:22) + 04215
231 2010317.000 1 REDIKE commety ~(006:12) ¢ 025:46
530 20210317.000 1 ARGHVE sCOMAETD ~ G08:16) + 00050
) 330 20210517.000 1 IT QD - (00005 + 0354
1202103173 ARCAVE_IT @IS O
3120210371 ARGHIVE REDUCE scomees ~ (00019 + 0025
) 451 20210517.000_1 CLEA NG vk
« ik
1) £3.LOCAL SEND SOURCE scommeT ~ 0:00:13) + 0035 BOAEE
L a31LOCAL 5END_STATIC scomeuee (0:0:15) + 0000 s
31 REMOTE_COMPILE scommar ~ 0:40:05) + 01620
1 a3 resmoceix seowmere ~ (0:00:59) + 01230

[s [l oo I e o]
(o]

Total e 14 Chunk it day | Ch sz 1

start: 20210377
Member 000 Chunkc1
Wallock: 0200

et om 0310

Josarchiefautosubmasifm;_Copy out 3
essenivelautosuomiasifimp_Copy o 3

_images/frequency.png
v [sov] (S [oumno] [N (oo N (S

a00e_19900101_Member1_ini

a00e_19900101_Member2_ini

y y
a00e_19900101_Memberl_1_sim

a00e_19900101_Member2_1_sim

y y
a00e_19900101_Memberl_2_sim

a00e_19900101_Member2_2_sim

y y
a00e_19900101_Memberl_3_sim

a00e_19900101_Member2_3_sim

~,

a00e_19900101_Memberl_4_sim a00e_19900101_Member2_4_sim

\ N,

a00e_19900101_Member1_3_postprocess a00e_19900101_Memberl_5_sim

a00e_19900101_Member2_5_sim

i \

a00c_19900101_Memberl_5_postprocess | | a00c_19900101_Member2_3_postprocess

a00c_19900101_Member2_5_postprocess

e ~,

a00e_19900101_Memberl_combine a00e_19900101_Member2_combine

_images/fig_stat_2.jpg
Statistcs

Clearst

B Cuoved M Run B Foied obs N Faied Quouod M il Run
<0
as
30
25
 {
20
H
1s
10
0s
w m —
> S 3 3
N “\’as/ N N N N N
gt g g s g
= o o y o N Y Y I S
P T O Y S
Jobs

Period: 2020-03-26 07:51:00 ~ 2020-03-26 10:51:00
Submitted (#): 23

Run (#):23

Failed (#):12

Completed (#): 11

Queeing time (h): 501

Expected consumption real (h): 130
Expected consumption CPU time (h): 30810
Consumption real (h): 452

Consumption CPU time (h): 678.42
Consumption (%): 2202

_images/group_by_chunk_expand_status.png
UNKNOWN | | WAITING

) (]

013 LOCAL_SETUP

20000101_fel_1

]

QUEUING

013_20000202_fc1_1_SIM

L \

4013_20000101_fc0_I_POST

20000101_fc0_2.

/

4013_20000101_fc0_I_CLEAN

4013_20000101_fc0_3_POST

2013_2000010

20000101_fe1_2 a013_20000202_fc0_I_POST 20000202_fc0_2. a013_20000202_fc 1_1_POST 2013_20000202_fc1_2_SIM
! I ! : !

20000101_fe1_3) a013_20000202_fc0_I_CLEAN | | 20000202_fc0_3 a013_20000202_fcl_I_CLEAN | | a013_20000202_fcl 2 POST | | 20000202_fc1 3
v

4013_20000202_fc1_2_CLEAN

_images/group_by_chunk_status.png
UNKNOWN WAITING READY

a013_LOCAL_SETUP

A J
20000101_fc0_1) 20000101 _fel_t) 20000202_fe1_t
| I \
20000101_{c0_2 20000101_fel 2 2013.20000202_£c0_1_POST | | 20000202_tc0_2 20000202_fc1_2
— 20000101_1.3[[) | 01320000202 fc0_1_CLEAN | [20000202 1003) 20000202_fc1_3
v

a013_20000101_fc0_3_POST

A 2

a013_20000101_fc0_3_CLEAN

_images/group_automatic.png
2013_20000101_fcl_1_POST

UNKNOWN | | WAITING | | READY

2013_20000202_fc0_1_SIM

20000202_fc1

QUEUING

a013_20000101_fc1_2_SIM.

a013_20000202_fc0_1_POST

20000202_fc0_2

/

N

v

|

2013_20000101_fc1_1_CLEAN

a013_20000101_fc1_2_POST

20000101_fc1_3

2013_20000202_fc0_1_CLEAN

20000202_fc0_3

}

2013_20000101_fcl_2_CLEAN

_images/group_by_chunk_expand.png
UNKNOWN | | WAITING:

) [

) [(o] [[

013 LOCAL_SETUP

AN

2013.20000101_fc0_INI

2013_20000101_fe 1 INI | | 2013 20000202_fc0_INI

2013 20000202_fel_INI

/

. :

}

2013_20000101_fc0_1_SIM

20000101_fel_1 20000202_fc0_1

20000202_fe1_1

Pl

. I

|

2013_20000101_fc0_I_POST

2013_20000101_fc0_2_SIM

20000101 12) 2000020202)

2013_20000202_fe1 2_SIM

/

/

| |

]

2013.20000101_fe0_I_CLEAN

2013_20000101_fc0_2_ POST

20000101_fc0_3

D 20000101_fe1 3) 20000202_fc0_3)

013_20000202_fe1 2_POST

20000202_fe1 3 D

:

2013_20000101_fc0_2_CLEAN

I

013 20000202_fel_2 CLEAN

_images/group_by_date_status_expand.png
015 20000100 1_$OST.

)) () [(o] O

a1 L0cAL SETUY,

015 20000101 1115t

/

|

ars 20000101 se1post | (o svonon 125

/

/=

a5 200020 s post | [oz o2 smi

1 1

013 20000202 11511

1

wars 200020 i1 1vose | s 000z e 2 5o

| |

015 20000100 CLEAN

013 20000101 0 2 $OST.

015 200001010 3 501

ars 200001 i1 1_cean | [0 mo0aiar e 2 vost

13 200000013 500

wars 200020 1 cuean | [13 2ma0mz i 2 vost.

13 20000200 3 501

ors 20 er_1cean | [0 mowae e 2 vost

013 20000302 13 50

]

|

013 20000101 50 2_CLEAN

01320000101 0 3 $OST.

1

015 2000010103 CLEAN

[

|

015 20000101 i1 2 CLEAN

015 2000010113 $OST.

1

015 2000010111 3_CLEAN

!

|

013200020 50 2_CLEAN

015 20000202 03 POST

]

015 2000020203 CLEAN

]

!

01320000202 112 CLEAN

015 20000202 1 3_$OST.

1

013 2000020 11 3_CLEAN

_images/group_by_date_expand.png
) [

013_LOCAL_SETUP

_images/group_by_date_status.png
a013_20000202_fc0_1_POST

UNKNOWN WAITING

READY

a013_LOCAL_SETUP

20000101

a013_20000202_fc1_1_SIM

QUEUING

P

2013_20000202_{c0_2_SIM

a013_20000202_fc1_1_POST

a013_20000202_fc1_2_SIM

/

N

|

L

a013_20000202_fc0_1_CLEAN

a013_20000202_{c0_2_POST

a013_20000202_{c0_3_SIM

a013_20000202_fcl_1_CLEAN

a013_20000202_fc1_2_POST

a013_20000202_fc1_3_SIM

!

:

2013_20000202_fc0_2_CLEAN

a013_20000202_fc0_3_POST

I

a013_20000202_fc0_3_CLEAN

|

I

a013_20000202_fc1_2_ CLEAN

a013_20000202_fc1_3_POST

'

a013_20000202_fc1_3_CLEAN

_images/group_by_member_status.png
013_20000101_£c0_1_POST

013 LOCAL_SETUP

013.20000101_fe1_1_SIM

~

~,

013_20000101_&1_1_POST

01320000101 fe1 2_SIM

I

D

T

URiows NATHG KEADY - QUEING - - - -

013.20000202_:0_1_POST

013_20000202_20_2_SIM

]

I

I

4013.20000101_1c0_1_CLEAN

4013.20000101_1c0_2 POST

013.20000101_{c0_3_SIM

013.20000101_cl

_CLEAN

013.20000101_fc1 2_POST

4013.20000101_el_3 SIM

01320000202 £c0_1_CLEAN

401320000202 £c0_2 POST | | 3013 20000202_5c0_3 SIM

I

|

013_20000101_£0_2_ CLEAN

013_20000101_£0_3_POST

]

013.20000101_1c0_3 CLEAN

|

|

013_20000101_&1 2 CLEAN

013.20000101_fe1_3 POST

]

01320000101 fe1 3 CLEAN

|

|

01320000202 £c0_2 CLEAN | | 4013 20000202 £c0_3 POST

I

013.20000202_:0_3_CLEAN

_images/group_chunk.png
UNKNOWN | | WAITING

LOCAL_SETUP

QUEUING

a013_20000101_fc0_INI

a013_20000101_fe I_INI

a013_20000202_fc0_INI

a013_20000202_fc I_INI

|

I

|

I

20000101_£c0_t)

20000101_fel_t)

20000202_£c0_1)

20000202_fc1_t)

;

I

I

|

20000101_fc0_2)

20000101_fe1 2)

20000202_c0_2])

20000202_fc12 D

!

!

!

}

20000101_fc0_3

20000101_fcl_3

20000202_fc0_3

20000202_fc1_3

_images/group_by_member_expand.png
013 LOCAL_SETUP

N

013_20000101_£0_INT

013.20000101_fe1_INT

ooz] [

/

013.20000101_{c0_1_SIM

|

|

013.20000101_fe1_1_SIM

L~

~,

01320000101 £c0_

013.20000101_fc0,

. SiM

013_20000101_&1_1_POST

01320000101 fe1 2_SIM

/

— N\

I

|~

401320000202 £c0_1_SIM

v \

013_20000202_20_2_SIM

v

URiows NATHG KEADY - QUEING - - - -

L~

4013.20000101_1c0_1_CLEAN

01320000101 £c0_2 POST | | a013.20000101_{c0_3_SIM

4013.20000101_fcl_I_CLEAN

013.20000101_fc1 2_POST

4013.20000101_el_3 SIM

01320000202 £c0_1_CLEAN

401320000202 £c0_2 POST

401320000202 £c0_3 SIM

! |

013_20000101_£0_2_ CLEAN | | a013_20000101_£0_3_POST

]

013.20000101_1c0_3 CLEAN

|

|

013_20000101_&1 2 CLEAN

013.20000101_fe1_3 POST

]

01320000101 fe1 3 CLEAN

|

|

01320000202 £c0_2_ CLEAN

401320000202 £c0_3 POST

I

013.20000202_:0_3_CLEAN

_images/group_by_member_expand_status.png
4013_20000101_fc0_I_POST

/

UNKNOWN

WAITING | | READY

013 LOCAL_SETUP

g

20000101_te1][)

QUEUING

20000202_tc1[)

2013_20000202_fc0_1_POST

2013_20000202_fc0_2_SIM

I

|~

2013_20000101_fc0_I_CLEAN

013_20000101_fc0_2 POST

013_20000101_{c0_3 SIM

4013_20000202_fc0_I_CLEAN

2013_20000202_{c0_2_POST

2013_20000202_fc0_3_SIM

|

|

2013_20000101_{c0_2_CLEAN

4013_20000101_fc0_3_POST

I

a013_20000101_fc0_3_CLEAN

]

|

2013_20000202_fc0_2_CLEAN

2013_20000202_fc0_3_POST

|

2013_20000202_fc0_3_CLEAN

_images/group_synchronize.png
UNKNOWN | | WAITING

013 LOCAL_SETUP

QUEUING

a013_20000101_fc0_INI

a013_20000101_fc1_INI | | a013_20000202_fcO_INI

a013_20000202_fc I_INI

!

/

\

/

20000101_fc0_1 20000101_fcl_1 D 20000202_fc0_1 20000202_fc1_1)
I | ; }

20000101_fc0_2 20000101_fcl_2) 20000202_fc0_2 20000202_fc1_2 D
: ; : }

20000101_fc0_3 20000101_fcl_3 20000202_fc0_3 20000202_fc1_3

_images/horizontal_remote.png
401j.20000101_te1_1_POST | [a01j 20000101 _1c0_1_PoST

401j.20000101_tc1.2_POST

1] 20000101_c0_2_POST

401120000101 fc1 3 401]_20000101_1c0_3 POST

_images/group_date.png
UNKNOWN

WAITING

READY

a013_LOCAL_SETUP

Z&

| 20000101 20000202

QUEUING

_images/group_member.png
UNKNOWN WAITING READY - QUEUING

a013_LOCAL_SETUP

/\\.

20000101_fcO | 20000101 _fc1 20000202_fcO 20000202_fcl

_images/member-synchronize.png
WAITING | | READY

(] [ouenc] [[cowo] [N (S5

000_20000101_§c0_INI

000_20000101_fe1_INI

000_20010101_§c0_INI

000_20010101_fe1_INI

]

]

]

]

2000_20000101_£c0_1_SIM

2000_20000101_fe1_1_SIM

2000_20010101_£c0_1_SIM

000_20010101_fe1_1_SIM

VAR

g

VARG N

000_20000101_fc02_SIM | | 000_20000101_1_ASIM | | 5000_20000101_fc1_2_SIM.

000_20010101_60_2_SIM | | 200020010101 1_ASIM | | 2000 20010101_fe1_2_SIM

L~

.

[~

!

000_20000101_fc0_3 SIM | | 00020000101 2_ASIM | | 5000_20000101_fc1_3_SIM

000_20010101_60_3 SIM | | 200020010101 2_ASIM | | 2000 20010101_fe1_3_SIM

v
000_20000101_3_ASIM.

T~

/

2000_20010101_3_ASIM.

_images/no-synchronize.png
[[

00, 20000101 e 1N

v
00.2000001 0.1 514

AN

0 2000010111 NI

]

00.20000101 1.

AN

00, 201001 e

v
0020010101 01500

AN

00, 20100111

v
0020010101 11504

AN

020000101 tc0. a5t | [0 00101 10 2 50

a0 200001011 1 st | [5000 20101 1 250

000,20010101 0. 1ASIM.

00,2010101 0.2 514

a0 20010101 se1_1_asn | [e woron0 e 2 s

A

~,

—

N,

N\

AR

0 20000100 2 ASIN

0 20000100 3 514

002000001 e1.2 ASIM.

00,2000001 13 514

0 00101 c0.2 st | [0 wor0101 103 s <0 2001010111 2 a5 | [5000 20101 113 s

!

000,2000001 0.3 ASIN.

]

]

0 200001013 ASIN

00 2001010103 ASIN

!

00.20010101 13 ASIN.

_images/simple.png
WAITING

READY

a00e_One

a00e_Two

QUEUING

_images/skip.png
) [()) () (o) ([[

a3 weoon0n_seooo0 1 st | [021 1ocoo1on oo 2-sunt | [02 950010t scooo.3 sne ani ocsonn_ooo_ 15t | [0a_tsssoror eonoo 2_svt | [s 1o6soror_scooo 3 s

w001 seooo0 15t | [021 10101 oo 2-sivt | 02 9700101 scoo0.3 e

ani s ooor_1_so | [a_tsconnor eanor 2_svt | [1oaoror_scooo 3 s a0 sooor 1 s | [oai tossoron_tooor 2sine | [oa ossorot sconon 3 sie i oro0n01 oot 15 | 2 1omoror_sooor 2t | [0 700101 seovor 3 s

_images/running.png
S

a00e_19900101_Member2_member

a00e_19900101_Member1_member

|

WAITING

a00e_once

A J

a00e_19900101_date

A J

o

~,

QUEUING

a00e_20000101_date

a00e_20000101_Member1_member

/

~,

a00e_20000101_Member2_member

L

a00e_19900101_Member1_1_chunk

a00e_19900101_Memberl_2_chunk

a00e_19900101_Member2_1_chunk

a00e_19900101_Member2_2_chunk

a00e_20000101_Member1_1_chunk

a00e_20000101_Memberl_2_chunk

a00e_20000101_Member2_1_chunk

a00e_20000101_Member2_2_chunk

_images/select_chunks.png
59 LOCAL SETUP

4509 REMOTE SETUP.

59 19300101_00_1_POST
=

e 19s00101tean_1_ LA | [es 1980101 00 2 50

/
, I —

/ \
e e e

| N\

509 1900101 1e00 6 SIM | [eocomomn oo crean | [tosonot coo 4 cuan
T

>, | | |

\ / ~ |
/ — /\

w300 19300101100 7_pst | [e0_19w00101 1c00_5 st | [s5es_1omomion oo CLEAN
\ /

J
4509 19300101 600_5 POST

| | / {

|
\ s 1

> v
190 90, CLEAN MENBER

)
509 CLEAN_EXPERIMENT.

_images/split_workflow.png
UNKNOWN

WAITING | | READY

013 LOCAL_SETUP

y

013_20000101_fe0_INI

v

2013.20000101_£¢0_1_SIM

L

~,

QUEUING

13.20000101_c0_1_1_CMORATM

13.20000101_c0_1 2_CMORATM

13.20000101_c0_1_3_CMORATM

2013_20000101_c0_2_SIM

.

/

/ A A

\

013.20000101_fc0_1_POST

013.20000101_£c0_2_1_CMORATM

013.20000101_fc0_2 2 CMORATM

13.20000101_fe0 2 3 CMORATM

013_20000101_c0_3_SIM.

|

013_20000101_c0_1_CLEAN

e

/

_— |

\

013.20000101_c0_2_POST

013_20000101_fe0

|_CMORATM

013.20000101_f¢0_3 2 CMORATM | | 2013 20000101 fc0_3 3 CMORATM

y
13.20000101_fc0_2 CLEAN.

T

/

013.20000101_c0_3 POST

v
013.20000101_£c0_3 CLEAN

_images/vertical-horizontal.png
a01j_20061123_000_

_SIM

sl

I, S

)
201j_20061123_001_1_SIM | | 0 G

'

'

201§ 20061123_000_1_SIM2

a01j20061123_000_2_SIM

a01j_20061123_001_2_SIM

A01j_20061123_001_1_SIM2

I

sl

v

201§ 20061123_000_2_SIM2

a01j20061123_000_3_SIM

a01j_20061123_001_3_SIM

A01j_20061123_001_2_SIM2

|

sl

v

a01j20061123_000_3_SIM2

a01j20061123_000_4_SIM

201j_20061123_001_4_SIM | | | a1j_20061123_001_3_SIM2

a01j20061123_000_4_SIM2

201j_20061123_001_4_SIM2

_images/split.png
UNKNOWN

WAITING

QUEUING

2014_20000101_fc0_INT

2014_20000101_fc0_1_SIM

2014_20000101_fc0_1_1_ASIM

2014_20000101_fc0_1_2_ASIM

a014_20000101_fc0_1_3_ASIM

2014_20000101_fc0_2_SIM

/ L

.

2014_20000101_fc0_2_1_ASIM

2014_20000101_fc0_2_2_ASIM

2014_20000101_fc0_2_3_ASIM

a014_20000101_fc0_3_SIM

/

4014_20000101_fc0_1_POST

A

4014_20000101_fc0_3_1_ASIM

a014_20000101_fc0_3_2_ASIM

L

4014_20000101_fc0_2_POST

2014_20000101_fc0_3_POST

2014_20000101_{c0_3_3_ASIM

_images/split_group.png
UNKNOWN WATTING KEADY - SRR - - - -

a013_LOCAL_SETUP

v
a013_20000101_fc0_INT

v
2013_20000101_fc0_1_SIM

y \

2013_20000101_fc0_1_CMORATM || | a013_20000101_fc0_2_SIM

v \

a013_20000101_fc0_1_POST | | 2013_20000101_fc0_2_CMORATM || | a013_20000101_fc0_3_SIM

v v l

a013_20000101_fc0_1_CLEAN a013.20000101_fc0_2_POST | | a013_20000101_fc0_3_CMORATM
A J A J
a013_20000101_fc0_2_CLEAN a01320000101_fc0_3_POST
v

a013_20000101_fc0_3_CLEAN

_images/vertical-mixed.png
a01j_20061123_001_1_SIM

~,

a01j_20061123_001_1_SIM2 a01j_20061123_001_2_SIM

A J

a01j_20061123_001_2_SIM2 a01j_20061123_001_3_SIM

A J

a01j_20061123_001_3_SIM2 a01j_20061123_001_4_SIM

a01j_20061123_001_4_SIM2

_images/pre_grouping_workflow.png
) () () (] (o) D)| O)

a1 L0cAL SETUY,

.

1520000100 N1 015 20000101 1N 013 20000202 k0 N1 015 2000002 LN
015 200001010 511 015 20000101 1115t 015 20000202 01 514 013 20000202 11511
o wmnor a1 7ot | 015 20000100 25041 ars 20000101 se1post | (o svonon 125 a5 200020 s post | [oz o2 smi wars 200020 i1 1vose | s 000z e 2 5o

/ N\ / /[1 1 | |

wars 200010 o e | [sonszomanar ko2 post | o awonon o s | [z000m0se1 1 cuan]| [som zooon i 2 vost | [2mooiwr e sson | [zomeans o v coman | [ar2moom o 2rost | [20momz eossm | [ns 2maomn st rcrman | [momae e 2vost | [son zavomzer s sme

! | [| l |) |

sans 2000010 s 2_curan | [13 20000101 10 3 post w13 20010 1 2 cean | [so1 000 ser post rs 200 w0 2.cuean | [s01 0002 0 5 vost aar3 20000202 12 crean | [0 02 e 3 vost

| | | |

015 2000010103 CLEAN 015 2000010111 3_CLEAN 015 2000020203 CLEAN 013 2000020 11 3_CLEAN

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/down.png

_static/ajax-loader.gif

_static/up.png

_static/up-pressed.png

_static/plus.png

